Skip to main content
Log in

σ-hole bonding between like atoms; a fallacy of atomic charges

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Covalently bonded atoms, at least in Groups V–VII, may have regions of both positive and negative electrostatic potentials on their surfaces. The positive regions tend to be along the extensions of the bonds to these atoms; the origin of this can be explained in terms of the σ-hole concept. It is thus possible for such an atom in one molecule to interact electrostatically with its counterpart in a second, identical molecule, forming a highly directional noncovalent bond. Several examples are presented and discussed. Such “like-like” interactions could not be understood in terms of atomic charges assigned by any of the usual procedures, which view a bonded atom as being entirely positive or negative.

Calculated electrostatic potential on the surface of SCl2. The sulfur is in the foreground, the chlorines are at the back. Color ranges (kcal mol−1): purple negative, blue between 0 and 8, green between 8 and 15, yellow between 15 and 20, red more positive than 20. Note that the sulfur has regions of both positive (red) and negative (purple) electrostatic potential

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Allen LC (1989) J Am Chem Soc 111:9003–9014

    Article  CAS  Google Scholar 

  2. Meister J, Schwarz WHE (1994) J Phys Chem 98:8245–8252

    Article  CAS  Google Scholar 

  3. Bergmann D, Hinze J (1996) Angew Chem Int Ed Eng 35:150–163

    Article  CAS  Google Scholar 

  4. Politzer P, Grice ME, Murray JS (2001) J Mol Struct (Theochem) 549:69–76

    Article  CAS  Google Scholar 

  5. Brinck T, Murray JS, Politzer P (1992) Int J Quant Chem Quant Biol Symp 19:57–64

    Article  CAS  Google Scholar 

  6. Murray JS, Paulsen K, Politzer P (1994) Proc Indian Acad Sci Chem Sci 106:267–275

    CAS  Google Scholar 

  7. Auffinger P, Hays FA, Westhof E, Shing Ho P (2004) Proc Nat Acad Sci USA 101:16789–16794

    Article  CAS  Google Scholar 

  8. Politzer P, Lane P, Concha MC, Ma Y, Murray JS (2007) J Mol Model 13:305–311

    Article  CAS  Google Scholar 

  9. Clark T, Hennemann M, Murray JS, Politzer P (2007) J Mol Model 13:291–296

    Article  CAS  Google Scholar 

  10. Trogdon G, Murray JS, Concha MC, Politzer P (2007) J Mol Model 13:313–318

    Article  CAS  Google Scholar 

  11. Politzer P, Murray JS, Concha MC (2007) J Mol Model 13:643–650

    Article  CAS  Google Scholar 

  12. Murray JS, Lane P, Clark T, Politzer P (2007) J Mol Model 13:1033–1038

    Article  CAS  Google Scholar 

  13. Murray JS, Lane P, Politzer P (2007) Int J Quant Chem 107:2286–2292

    Article  CAS  Google Scholar 

  14. Stewart RF (1979) Chem Phys Lett 65:335–342

    Article  CAS  Google Scholar 

  15. Politzer P, Truhlar DG (eds) (1981) Chemical Applications of Atomic and Molecular Electrostatic Potentials. Plenum, New York

  16. Bader RFW, Carroll MT, Cheeseman JR, Chang C (1987) J Am Chem Soc 109:7968–7979

    Article  CAS  Google Scholar 

  17. Weinstein H, Politzer P, Srebrenik S (1975) Theor Chim Acta 38:159–163

    Article  CAS  Google Scholar 

  18. Bondi A (1964) J Phys Chem 68:441–451

    Article  CAS  Google Scholar 

  19. Guru Row TN, Parthasarathy R (1981) J Am Chem Soc 103:477–479

    Article  Google Scholar 

  20. Bleiholder C, Werz DB, Köppel H, Gleiter R (2006) J Am Chem Soc 128:2666–2674

    Article  CAS  Google Scholar 

  21. Wang F-F, Hou J-H, Li Z-R, Wu D, Li Y, Lu Z-Y, Cao W-L (2007) J Chem Phys 126:144301

    Article  Google Scholar 

  22. Politzer P, Murray JS, Lane P (2007) Int J Quant Chem 107:3046–3052

    Article  CAS  Google Scholar 

  23. Bernard-Houplain MC, Sandorfy C (1973) Can J Chem 51:3640–3646

    Article  CAS  Google Scholar 

  24. Di Paolo T, Sandorfy C (1974) Can J Chem 52:3612–3622

    Article  Google Scholar 

  25. Rosenfield RE Jr, Parthasarathy R, Dunitz JD (1977) J Am Chem Soc 99:4860

    Article  CAS  Google Scholar 

  26. Murray-Rust P, Motherwell WDS (1979) J Am Chem Soc 101:4374–4376

    Article  CAS  Google Scholar 

  27. Ramasubbu N, Parthasarathy R, Murray-Rust P (1986) J Am Chem Soc 108:4308–4314

    Article  CAS  Google Scholar 

  28. Iwaoka M, Komatsu H, Katsuda T, Tomoda S (2002) J Am Chem Soc 124:1902

    Article  CAS  Google Scholar 

  29. Valerio G, Raos G, Meille SV, Metrangolo P, Resnati G (2000) J Phys Chem A 104:1617–1620

    Article  CAS  Google Scholar 

  30. Romaniello P, Lelj F (2002) J Phys Chem A 106:9114–9119

    Article  CAS  Google Scholar 

  31. Cozzolino AF, Vargas-Baca I, Mansour S, Mahmoudkhani AH (2005) J Am Chem Soc 127:3184

    Article  CAS  Google Scholar 

  32. Lommerse JPM, Stone AJ, Taylor R, Allen FH (1996) J Am Chem Soc 118:3108–3116

    Article  CAS  Google Scholar 

  33. Corradi E, Meille SV, Messina MT, Metrangolo P, Resnati G (2000) Angew Chem Int Ed 39:1782

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Politzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Politzer, P., Murray, J.S. & Concha, M.C. σ-hole bonding between like atoms; a fallacy of atomic charges. J Mol Model 14, 659–665 (2008). https://doi.org/10.1007/s00894-008-0280-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-008-0280-5

Keywords

Navigation