Skip to main content
Log in

Oxidation mechanism in the metabolism of (S)-N-[1-(3-morpholin-4-ylphenyl)ethyl]-3-phenylacrylamide on oxyferryl active site in CYP3A4 Cytochrome: DFT modeling

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The metabolism mechanism of (S)-N-[1-(3-morpholin-4ylphenyl)ethyl]-3-phenylacrylamide, mediated by CYP3A4 Cytochrome has been investigated by density functional QM calculations aided with molecular mechanics/molecular dynamics simulations. Two different orientations of phenyl ring for substrate approach toward oxyferryl center, imposing two subsequent rearrangement pathways have been investigated. Starting from σ-complex in perpendicular orientation enzymatic mechanism involves consecutive proton shuttle intermediate, which further leads to the formation of alcohol and ketone. Parallel conformation leads solely to ketone product by 1,2 hydride shift. Although parallel and perpendicular σ-complexes are energetically equivalent both for the gas phase or PCM solvent model, molecular dynamics studies in full CYP3A4 environment show that perpendicular conformation of the σ-complex should be privileged, stabilized by hydrophobic interactions of phenylacrylamide chain. After assessing probability of the two conformations we postulate that the alcohol, accessible with the lowest energy barriers should be the major metabolite for studied substrate and CYP3A4 enzyme.

Orientation of phenyl ring towards porphyrin plane selected by substrate interaction with enzymatic cavity channels enzymatic reaction

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rendic S, Di Carlo FJ (1997) Drug Metab Rev 29:413–580

    Article  CAS  Google Scholar 

  2. Kumar GN, Surapaneni S (2001) Med Res Rev 21:397–411

    Article  CAS  Google Scholar 

  3. Guengerich FP (2001) Chem Res Toxicol 14:611–650

    Article  CAS  Google Scholar 

  4. Anzenbacher P, Anzenbacherova E (2001) Cell Mol Life Sci 58:737–747

    Article  CAS  Google Scholar 

  5. Ekins S, Bravi G, Binkley S, Gillespie JS, Ring BJ, Wikel JH, Wrighton SA (1999) J Pharmacol Exp Ther 290:429–438

    CAS  Google Scholar 

  6. Lewis DF, Lake BG (1998) Toxicology 125:31–44

    Article  CAS  Google Scholar 

  7. Wu YJ, Boissard CG, Greco C, Gribkoff VK, Harden DG, He H, L’Heureux A, Kang SH, Kinney GG, Knox RJ, Natale J, Newton AE, Lehtinen-Oboma S, Sinz MW, Sivarao DV, Starrett JE Jr, Sun L, Tertyshnikova S, Thompson MW, Weaver D, Wong HS, Zhang L, Dworetzky SI (2003) J Med Chem 46:3197–3200

    Article  CAS  Google Scholar 

  8. Wu YJ, Davis CD, Dworetzky S, Fitzpatrick WC, Harden D, He H, Knox RJ, Newton AE, Philip T, Polson C, Sivarao DV, Sun L, Tertyshnikova S, Weaver D, Yeola S, Zoeckler M, Sinz MW (2003) J Med Chem 46:3778–3781

    Article  CAS  Google Scholar 

  9. Williams PA, Cosme J, Vinkovic DM, Ward A, Angove HC, Day PJ, Vonrhein C, Tickle IJ, Jhoti H (2004) Science 305:683–686

    Article  CAS  Google Scholar 

  10. Yano JK, Wester MR, Schoch GA, Griffin KJ, Stout CD, Johnson EF (2004) J Biol Chem 279:38091–38094

    Article  CAS  Google Scholar 

  11. Ekroos M, Sjogren T (2006) Proc Natl Acad Sci USA 103:13682–13687

    Article  CAS  Google Scholar 

  12. Sono M, Roach MP, Coulter ED, Dawson JH (1996) Chem Rev 96:2841–2888

    Article  CAS  Google Scholar 

  13. Denisov IG, Makris TM, Sligar SG, Schlichting I (2005) Chem Rev 105:2253–2278

    Article  CAS  Google Scholar 

  14. Shaik S, Kumar D, de Visser SP, Altun A, Thiel W (2005) Chem Rev 105:2279–2328

    Article  CAS  Google Scholar 

  15. Ortiz de Montellano PR, De Voss JJ (2002) Nat Prod Rep 19:477–493

    Article  CAS  Google Scholar 

  16. Klamt A, Schüürmann G (1993) J Chem Soc Perkin Trans 2:799–805

    Google Scholar 

  17. Klamt A, Jonas V, Burger T, Lohrenz J (1998) J Phys Chem A 102:5074–5085

    Article  CAS  Google Scholar 

  18. Shaikh AR, Broclawik E, Ismael M, Tsuboi H, Koyama M, Kubo M, Del Carpio CA, Miyamoto A (2006) Chem Phys Lett 419:523–527

    Article  CAS  Google Scholar 

  19. Visser SP, Shaik S (2003) J Am Chem Soc 125:7413–7424

    Article  CAS  Google Scholar 

  20. Bathelt CM, Ridder L, Mulholland AJ, Harvey JN (2003) J Am Chem Soc 125:15004–15005

    Article  CAS  Google Scholar 

  21. Bathelt CM, Lars Ridder L, Mulholland AJ, Harvey JN (2004) Org Biomol Chem 2:2998–3005

    Article  CAS  Google Scholar 

  22. Luty BA, Wasserman ZR, Stouten PFW, Hodge CN, Zacharias M, McCammon JA (1995) J Comput Chem 16:454–464

    Article  CAS  Google Scholar 

  23. Pattabiraman N, Levitt M, Ferrin TE, Langridge R (1985) J Comput Chem 6:432–436

    Article  CAS  Google Scholar 

  24. Meng EC, Shoichet BK, Kuntz ID (1992) J Comput Chem 13:505–524

    Article  CAS  Google Scholar 

  25. Paulsen MD, Ornstein RL (1991) Proteins 11:184–204

    Article  CAS  Google Scholar 

  26. Endou A, Teraishi K, Yajima K, Yoshizawa K, Ohashi N, Takami S, Kubo M, Miyamoto A, Broclawik E (2000) Jpn J Appl Phys 39:4255–4260

    Article  CAS  Google Scholar 

  27. Onozu T, Miura R, Takami S, Kubo M, Miyamoto A, Iyechika Y, Maeda T (2000) Jpn J Appl Phys 39:4400–4403

    Article  CAS  Google Scholar 

  28. Onozu T, Gunji I, Miura R, Ammal SSC, Kubo M, Teraishi K, Miyamoto A, Iyechika Y, Maeda T (1999) Jpn J Appl Phys 38:2544–2548

    Article  CAS  Google Scholar 

  29. Koyama M, Hayakawa J, Onodera T, Ito K, Tsuboi H, Endou A, Kubo M, Del Carpio CA, Miyamoto A (2006) J Phys Chem B 110:17507–17511

    Article  CAS  Google Scholar 

  30. Delley B (1990) J Chem Phys 92:508–517

    Article  CAS  Google Scholar 

  31. Delley B (2000) J Chem Phys 113:7756–7769

    Article  CAS  Google Scholar 

  32. Lundberg M, Siegbahn PEM (2005) J Comput Chem DOI 1002/jcc.2026

  33. Pierloot K, private communication

  34. Radon M, Broclawik E, J Chem Theory Comput (in press)

  35. Dowers TS, Rock DA, Jones JP (2004) J Am Chem Soc 126:8868–8869

    Article  CAS  Google Scholar 

  36. Schlichting I, Berendzen J, Chu K, Stock AM, Maves SA, Benson DE, Sweet RM, Ringe D, Petsko GA, Sligar SG (2000) Science 287:1615–1622

    Article  CAS  Google Scholar 

  37. Kaizer J, Klinker EJ, Oh NY, Rohde JU, Song WJ, Stubna A, Kim J, Munck E, Nam W, Que L Jr (2004) J Am Chem Soc 126:472–473

    Article  CAS  Google Scholar 

  38. Davydov R, Makris TM, Kofman V, Werst DE, Sligar SG, Hoffman BM (2001) J Am Chem Soc 123:1403–1453

    Article  CAS  Google Scholar 

  39. Schoneboom JC, Niese F, Thiel W (2005) J Am Chem Soc 127:5840–5853

    Article  CAS  Google Scholar 

  40. Yoshizawa K (2002) Coord Chem Rev 226:251–259

    Article  CAS  Google Scholar 

  41. Kamachi T, Yoshizawa K (2003) J Am Chem Soc 125:4652–4661

    Article  CAS  Google Scholar 

  42. Kamachi T, Shestakov AF, Yoshizawa K (2004) J Am Chem Soc 126:3672–3673

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. G. D. Szklarz and Mr. Spencer Ericksen, Department of Basic Pharmaceutical Sciences, West Virginia University for kindly providing us CVFF parameters for heme moiety.

This study was partly sponsored by the Polish State Committee for Scientific Research (Grant No. 2 P04A 042 26).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewa Broclawik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaikh, A.R., Broclawik, E., Tsuboi, H. et al. Oxidation mechanism in the metabolism of (S)-N-[1-(3-morpholin-4-ylphenyl)ethyl]-3-phenylacrylamide on oxyferryl active site in CYP3A4 Cytochrome: DFT modeling. J Mol Model 13, 851–860 (2007). https://doi.org/10.1007/s00894-007-0196-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-007-0196-5

Keywords

Navigation