Skip to main content
Log in

Structure of glutathione S-transferase of the filarial parasite Wuchereria bancrofti: a target for drug development against adult worm

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A three dimensional structural model of Glutathione-S-transferase (GST) of the lymphatic filarial parasite Wuchereria bancrofti (wb) was constructed by homology modeling. The three dimensional X-ray crystal structure of porcine π-class GST with PDB ID: 2gsr-A chain protein with 42% sequential and functional homology was used as the template. The model of wbGST built by MODELLER6v2 was analyzed by the PROCHECK programs. Ramachandran plot analysis showed that 93.5% of the residues are in the core region followed by 5.4 and 1.1% residues in the allowed and generously allowed regions, respectively. None of the non-glycine residues is in disallowed regions. The PROSA II z-score and the energy graph for the final model further confirmed the quality of the modeled structure. The computationally modeled three-dimensional (3D) structure of wbGST has been submitted to the Protein Data Bank (PDB) (PDB ID: 1SFM and RCSB ID: RCSB021668). 1SFM was used for docking with GST inhibitors by Hex4.2 macromolecular docking using spherical polar Fourier correlations.

Figure: A three-dimensional (3D) structure of Glutathione-S-transferase (GST) of the lymphatic filarial parasite Wuchereria bancrofti (wb) was constructed by homology modeling. This modeled 3D structure of wbGST has been submitted to the Protein Data Bank (PDB) (PDB ID: 1SFM and RCSB ID: RCSB021668).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. WHO/CDS/CPE/CEE/2002.28. Global programme to eliminate lymphatic filariasis

  2. Michele AM, DeWight RW, John AT (1995) J Mol Biol 246:21–27

    Google Scholar 

  3. Harwaldt P, Rahlfs S, Becker K (2002) Biol Chem 383:821–830

    Google Scholar 

  4. Brophy PM, Campbell AM, van Eldik AJ, Teesdale-Spittle PH, Liebau E, Wang MF (2000) Bioorg Med Chem Lett 10:979–981

    Google Scholar 

  5. Rao UR, Salinas G, Mehta K, Klei TR (2000) Parasitol Res 86:908–915

    Google Scholar 

  6. Mathew N, Paily KP, Vanamail P, Kalyanasundaram AM, Balaraman K (2002) Drug Dev Res 56:33–39

    Google Scholar 

  7. Brophy PM, Pritchard DI (1994) Exp Parasitol 79:89–96

    Google Scholar 

  8. Precious WY, Barrett J (1989) J Parasitol Today 5:156–160

    Google Scholar 

  9. Liebau E, Wildenburg G, Brophy PM, Walter RD, Henkle-Duhrsen K (1996) Mol Biochem Parasitol 80:27–39

    Google Scholar 

  10. Wildenburg G, Liebau E, Henkle-Duhrsen K (1998) Exp Parasitol 88:34–42

    Google Scholar 

  11. Rathaur S, Fischer P, Domagalsky M, Walter RD, Liebau E (2003) Exp Parasitol 103:177–181

    Google Scholar 

  12. Campbell AM, van Eldik AJ, Liebau E, Barrett J, Brophy PM, Teesdale-Spittle PH, Wang MF (2001) Chem-Biol Interact 133:240–243

    Google Scholar 

  13. Johnson MS, Srinivasan N, Sowdhamini R, Blundell TL (1994) Crit Rev Biochem Mol Biol 29:1–68

    Google Scholar 

  14. Sali A (1995) Curr Opin Biotechnol 6:437–451

    Google Scholar 

  15. Rost B, Sander C (1996) Annu Rev Biophys Biomol Struct 25:113–136

    Google Scholar 

  16. Chothia C, Lest AM (1986) EMBO J 5:823–826

    CAS  PubMed  Google Scholar 

  17. Sanchez R, Sali A (1997) Curr Opin Struct Biol 7:206–214

    Google Scholar 

  18. Altschul SF, Thomas LM, Alejandro A, Schäffer JZ, Zheng Z, Webb M, David JL (1997) Nucleic Acids Res 25:3389–3402

    CAS  PubMed  Google Scholar 

  19. Dirr H, Reinemer P, Huber R (1994) J Mol Biol 243:72–92

    Google Scholar 

  20. Higgins D, Thompson J, Gibson T, Thompson JD, Higgins DG, Gibson T (1994) J Nucleic Acids Res 22:4673–4680

    Google Scholar 

  21. Sali A, Blundell TL (1993) J Mol Biol 234:779–815

    Article  CAS  PubMed  Google Scholar 

  22. Sali A, Potterton L, Yuan F, van Vlijmen H, Karplus M (1995) Proteins 23:318–326

    Google Scholar 

  23. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  24. Hooft RWW, Vriend G, Sander C, Abola EE (1996) Nature 381:272

    Article  CAS  PubMed  Google Scholar 

  25. Ramachandran GN, Ramakrishnan C, Sasisekharan V (1963) J Mol Biol 7:95–99

    CAS  PubMed  Google Scholar 

  26. Morris AL, MacArthur MW, Hutchinson EG, Thornton JM (1992) Proteins 12:345–364

    CAS  PubMed  Google Scholar 

  27. Sippl MJ (1993) Proteins 17:355–362

    CAS  PubMed  Google Scholar 

  28. Guex N, Peitsch MC (1997) Electrophoresis 18:2714–2723

    CAS  PubMed  Google Scholar 

  29. Ritchie DW, Kemp GJL (2000) Proteins: Struct Funct Genet 39:178–194

    Google Scholar 

  30. Gilliland GL (1993) Curr Opin Struct Biol 3:875–884

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. P.K. Das, Director, Vector Control Research Centre for providing the facility and his encouragement during the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nisha Mathew.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nathan, S.T., Mathew, N., Kalyanasundaram, M. et al. Structure of glutathione S-transferase of the filarial parasite Wuchereria bancrofti: a target for drug development against adult worm. J Mol Model 11, 194–199 (2005). https://doi.org/10.1007/s00894-005-0234-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-005-0234-0

Keywords

Navigation