Skip to main content
Log in

Optimization of parameters for semiempirical methods IV: extension of MNDO, AM1, and PM3 to more main group elements

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The NDDO semiempirical methods MNDO, AM1, and PM3 have been extended to all the remaining non-radioactive elements of the main group, excluding the noble gases. Most of the new elements are of Groups I and II. 44 sets of parameters are presented for the following methods and elements. MNDO: Na, Mg, K, Ca, Ga, As, Se, Rb, Sr, In, Sb, Te, Cs, Ba, Tl, and Bi; AM1: Li, Be, Na, Mg, K, Ca, Ga, As, Se, Rb, Sr, In, Sn, Sb, Te, Cs, Ba, Tl, Pb, and Bi; PM3: B, Na, K, Ca, Rb, Sr, Cs, and Ba. Average errors are presented for heats of formation, molecular geometries, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Pople JA, Santry DP, Segal GA (1965) J Chem Phys 43:S129–S135

    Google Scholar 

  2. Pople JA, Beveridge DL, Dobosh PA (1967) J Chem Phys 47:2026–2033

    CAS  Google Scholar 

  3. Dewar MJS, Thiel W (1977) J Am Chem Soc 99:4899–4907

    CAS  Google Scholar 

  4. Dewar MJS, Thiel W (1977) J Am Chem Soc 99:4907–4917

    CAS  Google Scholar 

  5. Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) J Am Chem Soc 107:3902–3909

    CAS  Google Scholar 

  6. Stewart JJP (1989) J Comput Chem 10:209–220

    CAS  Google Scholar 

  7. Stewart JJP (1989) J Comput Chem 10:221–264

    CAS  Google Scholar 

  8. Stewart JJP (1991) J Comput Chem 12:320–341

    CAS  Google Scholar 

  9. Thiel W (1982) MNDOC 2. QCPE No 438

  10. Dewar MJS, Rzepa HS (1978) J Am Chem Soc 100:777–784

    CAS  Google Scholar 

  11. Bock H, Ruppert K, Havlas Z, Fenske D (1990) Angew Chem Int Ed Engl 29:1042-1044

    Article  Google Scholar 

  12. Bock H, Näther C, Ruppert K (1992) J Chem Soc Chem Comm 765–766

  13. Anders E, Koch R, Freunscht P (1993) J Comput Chem 14:1301–1312

    CAS  Google Scholar 

  14. Voityuk AA, Rösch N (2000) J Phys Chem A 104:4089–4094

    Article  CAS  Google Scholar 

  15. Thiel W, Voityuk A (1996) J Phys Chem 100:616–629

    Article  CAS  Google Scholar 

  16. Stewart JJP (2002) MOPAC2002 1.0. Fujitsu Ltd, Tokyo, Japan

  17. Brothers EN, Merz KM (2002) J Phys Chem B 106:2779–2785

    Article  CAS  Google Scholar 

  18. Dewar MJS, Healy EF, Kuhn DR, Holder AJ (1991) Organometallics 10:431–435

    CAS  Google Scholar 

  19. Gardner P, Preston SR, Siertsema R, Steele F (1993) J Comput Chem 14:1523

    CAS  Google Scholar 

  20. Hirota E, Kuchitsu K, Lafferty WJ, Ramsey DA (1992) Structure data on free polyatomic molecules. Landolt–Bornstein. Springer, Berlin

  21. Schulz A, Smith BJ, Radom L (1999) J Phys Chem A 103:7522–7527

    Article  Google Scholar 

  22. Stewart JJP (2000) J Mol Struct 556:59–67

    Article  Google Scholar 

  23. Perkins PG, Stewart JJP (1980) J Chem Soc Faraday Trans II 76:520–533

    CAS  Google Scholar 

  24. Born M, von Kármán T (1912) Z Physik 13:297–309

    CAS  Google Scholar 

  25. Hutter MC, Reimers JR, Hush NS (1998) J Phys Chem B 102:8080–8090

    Article  Google Scholar 

  26. Huber KP, Herzberg G (2003) Constants of diatomic molecules. In: Linstrom PJ, Mallard WG (eds) NIST chemistry webbook, NIST standard reference database number 69. National Institute of Standards and Technology, Gaithersburg, MD 20899

  27. Dewar MJS, Grady GL, Healy EF (1987) Organometallics 6:186–189

    CAS  Google Scholar 

  28. Dewar MJS, Jie C (1989) Organometallics 8:1544–1547

    CAS  Google Scholar 

  29. Davis LP, Guidry RM, Williams JR, Dewar MJS, Rzepa HS (1981) J Comput Chem 2:433-445

    CAS  Google Scholar 

  30. Dewar MJS, Jie C, Zoebisch EG (1988) Organometallics 7:513–521

    CAS  Google Scholar 

  31. Dewar MJS, Healy EF (1983) J Comput Chem 4:542–551

    CAS  Google Scholar 

  32. Dewar MJS, Healy EF (1983) J Comput Chem 4:542–551

    CAS  Google Scholar 

  33. Dewar MJS, Rzepa HS (1978) J Am Chem Soc 100:58–67

    CAS  Google Scholar 

  34. Dewar MJS, Grady GL, Stewart JJP (1984) J Am Chem Soc 106:6771–6773

    CAS  Google Scholar 

  35. Dewar MJS, Holder AJ (1990) Organometallics 9:508–511

    CAS  Google Scholar 

  36. Dewar MJS, Friedheim J, Grady G, Healy EF, Stewart JJP (1986) Organometallics 5:375-379

    CAS  Google Scholar 

  37. Dewar MJS, Jie C (1987) Organometallics 6:1486–1490

    CAS  Google Scholar 

  38. Dewar MJS, Healy EF, Stewart JJP (1984) J Comput Chem 5:358–362

    CAS  Google Scholar 

  39. Dewar MJS, McKee ML, Rzepa HS (1978) J Am Chem Soc 100:3607–3607

    CAS  Google Scholar 

  40. Dewar MJS, Jie C (1989) J Mol Struct (Theochem) 187:1–13

    Google Scholar 

  41. Dewar MJS, Reynolds CH (1986) J Comput Chem 7:140–143

    CAS  Google Scholar 

  42. Dewar MJS, Yuan Y-C (1990) Inorg Chem 29:3881–3890

    CAS  Google Scholar 

  43. Dewar MJS, Rzepa HS (1983) J Comput Chem 4:158–169

    CAS  Google Scholar 

  44. Dewar MJS, Holloway MK, Grady GL, Stewart JJP (1985) Organometallics 4:1973–1980

    CAS  Google Scholar 

Download references

Acknowledgment

This work was funded by grant 1 R43 GM067327-01 from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James J. P. Stewart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stewart, J.J.P. Optimization of parameters for semiempirical methods IV: extension of MNDO, AM1, and PM3 to more main group elements. J Mol Model 10, 155–164 (2004). https://doi.org/10.1007/s00894-004-0183-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-004-0183-z

Keywords

Navigation