Skip to main content

Advertisement

Log in

Structural and functional characterization of the human CCR5 receptor in complex with HIV gp120 envelope glycoprotein and CD4 receptor by molecular modeling studies

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The entry of human immunodeficiency virus (HIV) into cells depends on a sequential interaction of the gp120 envelope glycoprotein with the cellular receptors CD4 and members of the chemokine receptor family. The CC chemokine receptor CCR5 is such a receptor for several chemokines and a major coreceptor for the entry of R5 HIV type-1 (HIV-1) into cells. Although many studies focus on the interaction of CCR5 with HIV-1, the corresponding interaction sites in CCR5 and gp120 have not been matched. Here we used an approach combining protein structure modeling, docking and molecular dynamics simulation to build a series of structural models of the CCR5 in complexes with gp120 and CD4. Interactions such as hydrogen bonds, salt bridges and van der Waals contacts between CCR5 and gp120 were investigated. Three snapshots of CCR5–gp120–CD4 models revealed that the initial interactions of CCR5 with gp120 are involved in the negatively charged N-terminus (Nt) region of CCR5 and positively charged bridging sheet region of gp120. Further interactions occurred between extracellular loop2 (ECL2) of CCR5 and the base of V3 loop regions of gp120. These interactions may induce the conformational changes in gp120 and lead to the final entry of HIV into the cell. These results not only strongly support the two-step gp120–CCR5 binding mechanism, but also rationalize extensive biological data about the role of CCR5 in HIV-1 gp120 binding and entry, and may guide efforts to design novel inhibitors.

Figure Three structural models of CCR5 in complex with gp120–CD4. These represent snapshots of different intermediates of the complex that characterize the dynamic interaction process of CCR5 with gp120. The ribbon diagram shows gp120 in red, the two N-terminal domains of CD4 in yellow, and CCR5 in blue. The Nt, ECL1, 2, and 3 in CCR5, as well as the bridging sheet and V3 loop base of gp120 are labeled. Model I shows that Nt begins to interact with the bridging sheet, the ECLs of CCR5 do not interact with gp120 and there is a big gap between them. It is a snapshot of the initial recognition of CCR5 with gp120. Model III shows that ECL2 begins to interact with the V3 loop base in addition to the interaction between Nt and the bridging sheet. It is a snapshot of the transition state of the binding process. Model II shows the full interaction between CCR5 and gp120. More residues within Nt interact with the bridging sheet, ECL2 and ECL3 interact with the V3 base loop and bridging sheet, respectively. It is a snapshot of a "fusion-active" state prior to virus entry. The interaction intensities between CCR5 and gp120 are model I<model III<model II

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1a–c.
Fig. 2a–c.
Fig. 3.

Similar content being viewed by others

Notes

  1. Human immunodeficiency virus

  2. N terminal/N terminus

  3. Extracellular loop

  4. Regulated on activation normal T cell expressed and secreted

  5. Macrophage inflammatory protein

References

  1. Dalgleish AG, Beverley PC, Clapham PR, Crawford DH, Greaves MF, Weiss RA (1984) Nature 312:763–766

    CAS  PubMed  Google Scholar 

  2. Klatzmann D, Champagne E, Chamaret S, Gruest J, Guetard D, Hercend T, Gluckman JC, Montagnier L (1984) Nature 312:767–768

    CAS  PubMed  Google Scholar 

  3. Feng Y, Broder CC, Kennedy PE, Berger EA (1996) Science 272:872–877

    Google Scholar 

  4. Dragic T, Litwin V, Allaway GP, Martin SR, Huang Y, Nagashima KA, Cayanan C, Maddon PJ, Koup RA, Moore JP, Paxton WA (1996) Nature 381:667–673

    Google Scholar 

  5. Deng H, Liu R, Ellmeier W, Choe S, Unutmaz D, Burkhart M, Marzio PD, Marmon S, Sutton RE, Hill CM, Davis CB, Pepier SC, Schall TJ, Littman DR, Landau NR (1996) Nature 381:661–666

    CAS  PubMed  Google Scholar 

  6. Alkhatib G, Combadiere C, Broder CC, Feng Y, Kennedy PE, Murphy PM (1996) Science 272:1955–1958

    Google Scholar 

  7. Strader CD, Fong TM, Tota MR, Underwood D (1994) Annu Rev Biochem 63:101–132

    CAS  PubMed  Google Scholar 

  8. Dean M, Carrington M, Winkler C, Huttley GA, Smith MW, Allikmets R, Goedert JJ, Buchbinder SP, Vittinghoff E, Gomperts E, Donfield S, Vlahov D, Kaslow R, Saah A, Rinaldo C, Detels R, O'Brien SJ (1996) Science 273:1856–1862

    Google Scholar 

  9. Huang Y, Paxton WA, Wolinsky SM, Neumann AU, Zhang L, He T, Kang S, Ceradini D, Jin Z, Yazdanbakhsh K, Kunstman K, Erickson D, Dragon E, Landau NR, Phair J, Ho DD, Koup RA (1996) Nat Med 2:1240–1243

    CAS  PubMed  Google Scholar 

  10. Samson M, Libert F, Doranz BJ, Rucker J, Liesnard C, Farber CM, Saragosti S, Lapoumeroulie C, Cognaux J, Forceille C, Muyldermans G, Verhofstede C, Burtonboy G, Georges M, Imai T, Rana S, Yi Y, Smyth RJ, Collman RG, Doms RW, Vassart G, Parmentier M (1996) Nature 382:722–725

    Google Scholar 

  11. Wu L, Gerard NP, Wyatt R, Choe H, Parolin C, Ruffing A, Borsetti A, Cardoso AA, Desjardin E, Newman W, Gerard C, Sodorski J (1996) Nature 384:179–183

    CAS  PubMed  Google Scholar 

  12. Trkola A, Dragic T, Arthos J, Binley JM, Olson WC, Allaway GP, Cheng-Mayer C, Robinson J, Maddon PJ, Moore JP (1996) Nature 384:184–186

    CAS  PubMed  Google Scholar 

  13. Kwong PD, Wyatt R, Robinson J, Sweet RW, Sodroski J, Hendrickson WA (1998) Nature 393:648–659

    Article  CAS  PubMed  Google Scholar 

  14. Wyatt R, Kwong PD, Desjardins E, Sweet RW, Robinson J, Hendrickson WA, Sodroski JG (1998) Nature 393:705–711

    Article  CAS  PubMed  Google Scholar 

  15. Rizzuto CD, Wyatt R, Hernandez-Ramos N, Sun Y, Kwong PD, Hendrickson WA, Sodroski JA (1998) Science 280:1949–1953

    Article  CAS  PubMed  Google Scholar 

  16. Walker JE, Saraste M (1996) Curr Opin Struct Biol 6:457–459

    Article  CAS  PubMed  Google Scholar 

  17. Gosling J, Monteclaro FS, Atchison RE, Arai H, Tsou CL, Goldsmith MA, Charo IF (1997) Proc Natl Acad Sci USA 94:5061–5066

    Article  CAS  PubMed  Google Scholar 

  18. Atchison RE, Gosling J, Monteclaro FS, Franci C, Digilio L, Charo IF, Goldsmith MA (1996) Science 274:1924–1926

    Article  CAS  PubMed  Google Scholar 

  19. Picard L, Simmons G, Power CA, Meyer A, Weiss RA, Clapham PR (1997) J Virol 71:5003–5011

    CAS  PubMed  Google Scholar 

  20. Alkhatib G, Ahuja SS, Light D, Mummidi S, Berger EA, Ahuja SK (1997) J Biol Chem 272:19771–19776

    Article  CAS  PubMed  Google Scholar 

  21. Samson M, LaRosa G, Libert F, Paindavoine P, Detheux M, Vassart G (1997) J Biol Chem 272:24934–24941

    Article  CAS  PubMed  Google Scholar 

  22. Dragic T, Trkola A, Lin SW, Nagashima KA, Kajumo F, Zhao L, Olson WC, Wu L, Mackay CR, Allaway GP, Sakmar TP, Moore JP, Maddon PJ (1998) J Virol 72:279–285

    CAS  PubMed  Google Scholar 

  23. Rabut GE, Konner JA, Kajumo F, Moore JP, Dragic T (1998) J Virol 72:3464–3468

    CAS  PubMed  Google Scholar 

  24. Farzan M, Choe H, Vaca L, Martin K, Sun Y, Desjardins E, Ruffing N, Wu L, Wyatt R, Gerard N, Gerard C, Sodroski J (1998) J Virol 72:1160–1164

    CAS  PubMed  Google Scholar 

  25. Navenot JM, Wang ZX, Trent JO, Murray JL, Hu QX, DeLeeuw L, Moore PS, Chang Y, Peiper SC (2001) J Mol Biol 313:1181–1193

    Article  CAS  PubMed  Google Scholar 

  26. Lee B, Sharron M, Blanpain C, Doranz BJ, Vakili J, Setoh P, Berg E, Liu G, Guy HR, Durell SR, Parmentier M, Chang CN, Price K, Tsang M, Doms RW (1999) J Biol Chem 274:9617–9626

    Article  CAS  PubMed  Google Scholar 

  27. Genoud S, Kajumo F, Guo Y, Thompson D, Dragic T (1999) J Virol 73:1645–1648

    CAS  PubMed  Google Scholar 

  28. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Research 28:235–242

    Article  CAS  PubMed  Google Scholar 

  29. Guex N, Peitsch MC (1997) Electrophoresis 18:2714–2723

    CAS  PubMed  Google Scholar 

  30. Binley JM, Wyatt R, Desjardins E, Kwong PD, Hendrickson W, Moore JP, Sodroski J (1998) AIDS Res Hum Retrovir 14:191–198

    CAS  Google Scholar 

  31. Blanpain B, Doranz BJ, Vakili J, Rucker J, Govaerts C, Baikc SSW, Lorthioir O, Migeotte I, Libert F, Baleux F, Vassart G, Doms RW, Parmentier M (1999) J Biol Chem 274:34719–34727

    Article  CAS  PubMed  Google Scholar 

  32. Doranz BJ, Lu ZH, Rucker J, Zhang TY, Sharron M, Cen YH, Wang ZX, Guo HH, Du JG, Accavitti MA, Doms RW, Peiper SC (1997) J Virol 71:6305–6314

    CAS  PubMed  Google Scholar 

  33. Rucker J, Samson M, Doranz BJ, Libert F, Berson JF, Yi Y, Smyth RJ, Collman RG, Broder CC, Vassart G, Doms RW, Parmentier M (1996) Cell 87:437–446

    CAS  PubMed  Google Scholar 

  34. Kraulis PJ (1991) J Appl Crystallogr 24:946–950

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Grant (China) (No. 19947006) and partially by the National Key Foundation Research Grant (No. 2002AA231031) in China (863)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhirong Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, S., Fan, S. & Sun, Z. Structural and functional characterization of the human CCR5 receptor in complex with HIV gp120 envelope glycoprotein and CD4 receptor by molecular modeling studies. J Mol Model 9, 329–336 (2003). https://doi.org/10.1007/s00894-003-0154-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-003-0154-9

Keywords

Navigation