Skip to main content

Advertisement

Log in

Morphology and infectivity of virus that persistently caused infection in an AGS cell line

  • Original Paper
  • Published:
Medical Molecular Morphology Aims and scope Submit manuscript

Abstract

A recent report has indicated that proteins and genes of simian virus 5 (SV5) are detected in a human gastric adenocarcinoma (AGS) cell line, which is widely provided for oncology, immunology, and microbiology research. However, the production of infective virions has not been determined in this cell line. In this study, the morphology and infectivity of the virus particles of the AGS cell line were studied by light and electron microscopy and virus transmission assay. The virus particles were approximately 176.0 ± 41.1 nm in diameter. The particles possessed projections 8–12 nm long on the surface and contained a nucleocapsid determined to be 13–18 nm in width and less than 1,000 nm in length. The virus was transmissible to the Vero cell line, induced multinuclear giant cell formation, and reproduced the same shape of antigenic virions. In this study, the persistently infected virus in the AGS cell line was determined to be infective and form reproducible virions, and a new morphological feature of SV5 was determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barranco SC, Townsend CM Jr, Casartelli C, Macik BG, Burger NL, Boerwinkle WR, Gourley WK (1983) Establishment and characterization of an in vitro model system for human adenocarcinoma of the stomach. Cancer Res 43:1703–1709

    PubMed  CAS  Google Scholar 

  2. Van-Solinge WW, Rehfeld J-F (1992) Co-transcription of the gastrin and cholecystokinin genes with selective translation of gastrin mRNA in a human gastric carcinoma cell line. FEBS Lett 309:47–50

    Article  PubMed  CAS  Google Scholar 

  3. Song DH, Rana B, Wolfe JR, Crimmins G, Choi C, Albanese C, Wang TC, Pestell RG, Wolfe MM (2003) Gastrin-induced gastric adenocarcinoma growth is mediated through cyclin D1. Am J Physiol Gastrointest Liver Physiol 285:G217–G222

    PubMed  CAS  Google Scholar 

  4. Lee B, Choi J, Kim J, Kim JH, Joo CH, Cho YK, Kim YK, Lee H (2002) Oncolysis of human gastric cancers by an E1B 55 kDadeleted YKL-1 adenovirus. Cancer Lett 185:225–233

    Article  PubMed  CAS  Google Scholar 

  5. Barranco SC, Weintraub B, MacLean KK, Beasley EG, Jenkins VK, Townsend CM Jr (1991) Relationship between glutathione levels and drug or radiation sensitivities in human gastric cancer cell lines in vitro. Invest New Drugs 9:29–36

    Article  PubMed  CAS  Google Scholar 

  6. Yu JR, Choi SD, Kim YW (2000) In vitro infection of Cryptosporidium parvum to four different cell lines. Korean J Parasitol 38:59–64

    Article  PubMed  Google Scholar 

  7. Choi MH, Hong ST, Chai JY, Park WY, Yu JR (2004) In vitro culture of Cryptosporidium muris in a human stomach adenocarcinoma cell line. Korean J Parasitol 42:27–34

    Article  PubMed  Google Scholar 

  8. Maruo S, Yang L, Takada K (2001) Roles of Epstein-Barr virus glycoproteins gp350 and gp25 in the infection of human epithelial cells. J Gen Virol 82:2373–2383

    PubMed  CAS  Google Scholar 

  9. Su B, Ceponis PJ, Sherman PM (2003) Cytoskeletal rearrangements in gastric epithelial cells in response to Helicobacter pylori infection. J Med Microbiol 52:861–867

    Article  PubMed  Google Scholar 

  10. Selbach M, Moese S, Meyer TF, Backert S (2002) Functional analysis of the Helicobacter pylori cag pathogenicity island reveals both VirD4-CagA-dependent and VirD4-CagA-independent mechanisms. Infect Immun 70:665–671

    Article  PubMed  CAS  Google Scholar 

  11. Backert S, Moese S, Selbach M, Brinkmann V, Meyer TF (2001) Phosphorylation of tyrosine 972 of the Helicobacter pylori CagA protein is essential for induction of a scattering phenotype in gastric epithelial cells. Mol Microbiol 42:631–644

    Article  PubMed  CAS  Google Scholar 

  12. Segal ED, Cha J, Lo J, Falkow S, Tompkins LS (1999) Altered states: involvement of phosphorylated CagA in the induction of host cellular growth changes by Helicobacter pylori. Proc Natl Acad Sci U S A 96:14559–14564

    Article  PubMed  CAS  Google Scholar 

  13. Abril E, Mendez RE, Garcia A, Serrano A, Cabrera T, Garrido F, Ruiz-Cabello F (1996) Characterization of a gastric tumor cell line defective in MHC class I inducibility by both alpha- and gammainterferon. Tissue Antigens 47:391–398

    Article  PubMed  CAS  Google Scholar 

  14. Abril E, Real LM, Serrano A, Jimenez P, Garcia A, Canton J, Trigo I, Garrido F, Ruiz-Cabello F (1998) Unresponsiveness to interferon associated with STAT1 protein deficiency in a gastric adenocarcinoma cell line. Cancer Immunol Immunother 47:113–120

    Article  PubMed  CAS  Google Scholar 

  15. Pucciarelli MG, Ruschkowski S, Trust TJ, Finlay BB (1995) Helicobacter pylori induces an increase in inositol phosphates in cultured epithelial cells. FEMS Microbiol Lett 129:293–299

    PubMed  CAS  Google Scholar 

  16. Chan EC, Chen KT, Lin YL (1996) Vacuolating toxin from Helicobacter pylori activates cellular signaling and pepsinogen secretion in human gastric adenocarcinoma cells. FEBS Lett 399:127–130

    Article  PubMed  CAS  Google Scholar 

  17. Smoot DT, Wynn Z, Elliott TB, Allen CR, Mekasha G, Naab T, Ashktorab H (1999) Effects of Helicobacter pylori on proliferation of gastric epithelial cells in vitro. Am J Gastroenterol 94: 1508–1511

    Article  PubMed  CAS  Google Scholar 

  18. Moese S, Selbach M, Kwok T, Brinkmann V, Konig W, Meyer TF, Backert S (2004) Helicobacter pylori induces AGS cell motility and elongation via independent signaling pathways. Infect Immun 72:3646–3649

    Article  PubMed  CAS  Google Scholar 

  19. Tsutsumi R, Higashi H, Higuchi M, Okada M, Hatakeyama M (2003) Attenuation of Helicobacter pylori CagA × SHP-2 signaling by interaction between CagA and C-terminal Src kinase. J Biol Chem 278:3664–3670

    Article  PubMed  CAS  Google Scholar 

  20. Backert S, Schwarz T, Miehlke S, Kirsch C, Sommer C, Kwok T, Gerhard M, Goebel UB, Lehn N, Koenig W, Meyer TF (2004) Functional analysis of the cag pathogenicity island in Helicobacter pylori isolates from patients with gastritis, peptic ulcer, and gastric cancer. Infect Immun 72:1043–1056

    Article  PubMed  CAS  Google Scholar 

  21. Iwakura K, Wu H, Nakano T, Daikoku E, Shimamoto C, Katsu K, Sano K (2007) Unique enhancement of multinuclear giant cell formation in AGS cell line infected with Helicobacter pylori. Bull OMC 53:1–9

    Google Scholar 

  22. Samuel CE (2001) Antiviral actions of interferons. Clin Microbiol Rev 14:778–809

    Article  PubMed  CAS  Google Scholar 

  23. Seo SH, Hoffmann E, Webster RG (2002) Lethal H5N1 influenza viruses escape host anti-viral cytokine responses. Nat Med 8:950–954

    Article  PubMed  CAS  Google Scholar 

  24. Harcourt BH, Sanchez A, Offermann MK (1999) Ebola virus selectively inhibits responses to interferons, but not to interleukin-1beta, in endothelial cells. J Virol 73:3491–3496

    PubMed  CAS  Google Scholar 

  25. Didcock L, Young DF, Goodbourn S, Randall RE (1999) Sendai virus and simian virus 5 block activation of interferon-responsive genes: importance for virus pathogenesis. J Virol 73:3125–3133

    PubMed  CAS  Google Scholar 

  26. Young DF, Carlos TS, Hagmaier K, Fan L, Randall RE (2007) AGS and other tissue culture cells can unknowingly be persistently infected with PIV5, a virus that blocks interferon signalling by degrading STAT1. Virology 365:238–240

    Article  PubMed  CAS  Google Scholar 

  27. Kohno T, Mohan S, Goto T, Morita C, Nakano T, Hong W, Sangco JCE, Morimatsu S, Sano K (2002) A new improved method for the concentration of HIV-1 infective particles. J Virol Methods 106:167–173

    Article  PubMed  CAS  Google Scholar 

  28. Kohno T, Fujioka Y, Goto T, Morimatsu S, Morita C, Nakano T, Sano K (1998) Contrast-enhancement for the image of human immunodeficiency virus from ultrathin section by immune electron microscopy. J Virol Methods 72:137–143

    Article  PubMed  CAS  Google Scholar 

  29. Li HL, Chen DD, Li XH, Zhang HW, Lu YQ, Ye CL, Ren XD (2002) Changes of NF-kB, p53, Bcl-2 and caspase in apoptosis induced by JTE-522 in human gastric adenocarcinoma cell line AGS cells: role of reactive oxygen species. World J Gastroenterol 8:431–435

    PubMed  CAS  Google Scholar 

  30. Choi YK, Yoon BI, Kook YH, Won YS, Kim JH, Lee CH, Hyun BH, Oh GT, Sipley J, Kim DY (2002) Overexpression of urokinase-type plasminogen activator in human gastric cancer cell line (AGS) induces tumorigenicity in severe combined immunodeficient mice. Jpn J Cancer Res 93:151–156

    Article  PubMed  CAS  Google Scholar 

  31. Okamoto S, Kawabata S, Nakagawa I, Okuno Y, Goto T, Sano K, Hamada, S (2003) Influenza A virus-infected hosts boost an invasive type of Streptococcus pyogenes infection in mice. J Virol 77:4101–4112

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kouichi Sano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ooi, Y., Daikoku, E., Wu, H. et al. Morphology and infectivity of virus that persistently caused infection in an AGS cell line. Med Mol Morphol 44, 213–220 (2011). https://doi.org/10.1007/s00795-010-0530-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00795-010-0530-3

Key words

Navigation