Skip to main content

Advertisement

Log in

Insulin-producing cells derived from stem/progenitor cells: therapeutic implications for diabetes mellitus

  • Review
  • Published:
Medical Molecular Morphology Aims and scope Submit manuscript

Abstract

One of the most common diseases of the pancreas is diabetes mellitus. The current treatment of exogenous insulin supply is not fully capable of achieving tight control of glucose regulation, leading to long-term complications. Hence, recent success in islet transplantation-based therapies for diabetes mellitus and the extreme shortage of pancreatic islets have motivated recent efforts to develop renewable sources of islet-replacement tissue. Of clinical interest, I review the recent progress on stem cell-based strategies for diabetes in view of regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shapiro AM, Lakey JR, Ryan EA, Korbutt GS, Toth E, Warnock GL, Kneteman NM, Rajotte RV (2000) Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 343:230–238

    Article  PubMed  CAS  Google Scholar 

  2. Ryan EA, Paty BW, Senior PA, Bigam D, Alfadhli E, Kneteman NM, Lakey JR, Shapiro AM (2005) Five-year follow-up after clinical islet transplantation. Diabetes 54:2060–2069

    Article  PubMed  CAS  Google Scholar 

  3. Chien KR, Moretti A, Laugwitz KL (2004) Development. ES cells to the rescue. Science 306:239–240

    Article  PubMed  CAS  Google Scholar 

  4. Lumelsky N, Blondel O, Laeng P, Velasco I, Ravin R, McKay R (2001) Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 292:1389–1394

    Article  PubMed  CAS  Google Scholar 

  5. Hori Y, Rulifson IC, Tsai BC, Heit JJ, Cahoy JD, Kim SK (2002) Growth inhibitors promote differentiation of insulin-producing tissue from embryonic stem cells. Proc Natl Acad Sci U S A 99:16105–16110

    Article  PubMed  CAS  Google Scholar 

  6. Blyszczuk P, Czyz J, Kania G, Wagner M, Roll U, St.-Onge L, Wobus AM (2003) Expression of Pax4 in embryonic stem cells promotes differentiation of nestin-positive progenitor and insulin-producing cells. Proc Natl Acad Sci U S A 100:998–1003

    Article  PubMed  CAS  Google Scholar 

  7. Lendahl U, Zimmerman LB, McKay RD (1990) CNS stem cells express a new class of intermediate filament protein. Cell 60: 585–595

    Article  PubMed  CAS  Google Scholar 

  8. Rulifson EJ, Kim SK, Nusse R (2002) Ablation of insulin-producing neurons in flies: growth and diabetic phenotypes. Science 296:1118–1120

    Article  PubMed  CAS  Google Scholar 

  9. Ikeya T, Galic M, Belawat P, Nairz K, Hafen E (2002) Nutrient-dependent expression of insulin-like peptides from neuroendocrine cells in the CNS contributes to growth regulation in Drosophila. Curr Biol 12:1293–1300

    Article  PubMed  CAS  Google Scholar 

  10. Deltour L, Leduque P, Blume N, Madsen O, Dubois P, Jami J, Bucchini D (1993) Differential expression of the two nonallelic proinsulin genes in the developing mouse embryo. Proc Natl Acad Sci U S A 90:527–531

    Article  PubMed  CAS  Google Scholar 

  11. Gerozissis K (2003) Brain insulin: regulation, mechanisms of action and functions. Cell Mol Neurobiol 23:1–25

    Article  PubMed  Google Scholar 

  12. Delacour A, Nepote V, Trumpp A, Herrera PL (2004) Nestin expression in pancreatic exocrine cell lineages. Mech Dev 121: 3–14

    Article  PubMed  CAS  Google Scholar 

  13. Esni F, Stoffers DA, Takeuchi T, Leach SD (2004) Origin of exocrine pancreatic cells from nestin-positive precursors in developing mouse pancreas. Mech Dev 121:15–25

    Article  PubMed  CAS  Google Scholar 

  14. Hori Y, Gu X, Xie X, Kim SK (2005) Differentiation of insulin-producing cells from human neural progenitor cells. PLoS Med 2: e103

    Article  PubMed  CAS  Google Scholar 

  15. Wurmser AE, Nakashima K, Summers RG, Toni N, D’Amour KA, Lie DC, Gage FH (2004) Cell fusion-independent differentiation of neural stem cells to the endothelial lineage. Nature (Lond) 430:350–356

    Article  CAS  Google Scholar 

  16. Wells JM, Melton DA (1999) Vertebrate endoderm development. Annu Rev Cell Dev Biol 15:393–410

    Article  PubMed  CAS  Google Scholar 

  17. Kim SK, Hebrok M (2001) Intercellular signals regulating pancreas development and function. Genes Dev 15:111–127

    Article  PubMed  CAS  Google Scholar 

  18. D’Amour KA, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG, Moorman MA, Kroon E, Carpenter MK, Baetge EE (2006) Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 24: 1392–1401

    Article  PubMed  CAS  Google Scholar 

  19. Kroon E, Martinson LA, Kadoya K, Bang AG, Kelly OG, Eliazer S, Young H, Richardson M, Smart NG, Cunningham J, Agulnick AD, D’Amour KA, Carpenter MK, Baetge EE (2008) Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 26:443–452

    Article  PubMed  CAS  Google Scholar 

  20. Brennan J, Lu CC, Norris DP, Rodriguez TA, Beddington RS, Robertson EJ (2001) Nodal signalling in the epiblast patterns the early mouse embryo. Nature (Lond) 411:965–969

    Article  CAS  Google Scholar 

  21. Kelly OG, Pinson KI, Skarnes WC (2004) The Wnt co-receptors Lrp5 and Lrp6 are essential for gastrulation in mice. Development (Camb) 131:2803–2815

    CAS  Google Scholar 

  22. Kubo A, Shinozaki K, Shannon JM, Kouskoff V, Kennedy M, Woo S, Fehling HJ, Keller G (2004) Development of definitive endoderm from embryonic stem cells in culture. Development (Camb) 131:1651–1662

    CAS  Google Scholar 

  23. D’Amour KA, Agulnick AD, Eliazer S, Kelly OG, Kroon E, Baetge EE (2005) Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol 23:1534–1541

    Article  PubMed  CAS  Google Scholar 

  24. Yao S, Chen S, Clark J, Hao E, Beattie GM, Hayek A, Ding S (2006) Long-term self-renewal and directed differentiation of human embryonic stem cells in chemically defined conditions. Proc Natl Acad Sci U S A 103:6907–6912

    Article  PubMed  CAS  Google Scholar 

  25. Takenaga M, Fukumoto M, Hori Y (2007) Regulated Nodal signaling promotes differentiation of the definitive endoderm and mesoderm from ES cells. J Cell Sci 120:2078–2090

    Article  PubMed  CAS  Google Scholar 

  26. Apelqvist A, Ahlgren U, Edlund H (1997) Sonic hedgehog directs specialised mesoderm differentiation in the intestine and pancreas. Curr Biol 7:801–804

    Article  PubMed  CAS  Google Scholar 

  27. Kim SK, Melton DA (1998) Pancreas development is promoted by cyclopamine, a hedgehog signaling inhibitor. Proc Natl Acad Sci U S A 95:13036–13041

    Article  PubMed  CAS  Google Scholar 

  28. Chen JK, Taipale J, Cooper MK, Beachy PA (2002) Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev 16:2743–2748

    Article  PubMed  CAS  Google Scholar 

  29. Stafford D, Prince VE (2002) Retinoic acid signaling is required for a critical early step in zebrafish pancreatic development. Curr Biol 12:1215–1220

    Article  PubMed  CAS  Google Scholar 

  30. Tulachan SS, Doi R, Hirai Y, Kawaguchi Y, Koizumi M, Hembree M, Tei E, Crowley A, Yew H, McFall C, Prasadan K, Preuett B, Imamura M, Gittes GK (2006) Mesenchymal epimorphin is important for pancreatic duct morphogenesis. Dev Growth Differ 48: 65–72

    Article  PubMed  CAS  Google Scholar 

  31. Miyazaki S, Yamato E, Miyazaki J (2004) Regulated expression of pdx-1 promotes in vitro differentiation of insulin-producing cells from embryonic stem cells. Diabetes 53:1030–1037

    Article  PubMed  CAS  Google Scholar 

  32. Treff NR, Vincent RK, Budde ML, Browning VL, Magliocca JF, Kapur V, Odorico JS (2006) Differentiation of embryonic stem cells conditionally expressing neurogenin 3. Stem Cells 24:2529–2537

    Article  PubMed  CAS  Google Scholar 

  33. Lavon N, Yanuka O, Benvenisty N (2006) The effect of overexpression of Pdx1 and Foxa2 on the differentiation of human embryonic stem cells into pancreatic cells. Stem Cells 24:1923–1930

    Article  PubMed  CAS  Google Scholar 

  34. Schwitzgebel VM, Scheel DW, Conners JR, Kalamaras J, Lee JE, Anderson DJ, Sussel L, Johnson JD, German MS (2000) Expression of neurogenin3 reveals an islet cell precursor population in the pancreas. Development (Camb) 127:3533–3542

    CAS  Google Scholar 

  35. Johansson KA, Dursun U, Jordan N, Gu G, Beermann F, Gradwohl G, Grapin-Botton A (2007) Temporal control of neurogenin3 activity in pancreas progenitors reveals competence windows for the generation of different endocrine cell types. Dev Cell 12:457–465

    Article  PubMed  CAS  Google Scholar 

  36. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  PubMed  CAS  Google Scholar 

  37. Aoi T, Yae K, Nakagawa M, Ichisaka T, Okita K, Takahashi K, Chiba T, Yamanaka S (2008) Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science 321:699–702

    Article  PubMed  CAS  Google Scholar 

  38. Stadtfeld M, Brennand K, Hochedlinger K (2008) Reprogramming of pancreatic beta cells into induced pluripotent stem cells. Curr Biol 18:890–894

    Article  PubMed  CAS  Google Scholar 

  39. Tateishi K, He J, Taranova O, Liang G, D’Alessio AC, Zhang Y (2008) Generation of insulin-secreting islet-like clusters from human skin fibroblasts. J Biol Chem 283:31601–31607

    Article  PubMed  CAS  Google Scholar 

  40. Seaberg RM, Smukler SR, Kieffer TJ, Enikolopov G, Asghar Z, Wheeler MB, Korbutt G, Van Der Kooy D (2004) Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages. Nat Biotechnol 22:1115–1124

    Article  PubMed  CAS  Google Scholar 

  41. Suzuki A, Nakauchi H, Taniguchi H (2004) Prospective isolation of multipotent pancreatic progenitors using flow-cytometric cell sorting. Diabetes 53:2143–2152

    Article  PubMed  CAS  Google Scholar 

  42. Dor Y, Brown J, Martinez OI, Melton DA (2004) Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature (Lond) 429:41–46

    Article  CAS  Google Scholar 

  43. Xu X, D’Hoker J, Stange G, Bonne S, De Leu N, Xiao X, Van de Casteele M, Mellitzer G, Ling Z, Pipeleers D, Bouwens L, Scharfmann R, Gradwohl G, Heimberg H (2008) Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell 132:197–207

    Article  PubMed  CAS  Google Scholar 

  44. Gu G, Dubauskaite J, Melton DA (2002) Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development (Camb) 129:2447–2457

    CAS  Google Scholar 

  45. Hori Y, Fukumoto M, Kuroda Y (2008) Enrichment of putative pancreatic progenitor cells from mice by sorting for prominin1 (CD133) and platelet-derived growth factor receptor beta. Stem Cells 26:2912–2920

    Article  PubMed  CAS  Google Scholar 

  46. Uchida N, Buck DW, He D, Reitsma MJ, Masek M, Phan TV, Tsukamoto AS, Gage FH, Weissman IL (2000) Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci U S A 97:14720–14725

    Article  PubMed  CAS  Google Scholar 

  47. Bussolati B, Bruno S, Grange C, Buttiglieri S, Deregibus MC, Cantino D, Camussi G (2005) Isolation of renal progenitor cells from adult human kidney. Am J Pathol 166:545–555

    PubMed  CAS  Google Scholar 

  48. Richardson GD, Robson CN, Lang SH, Neal DE, Maitland NJ, Collins AT (2004) CD133, a novel marker for human prostatic epithelial stem cells. J Cell Sci 117:3539–3545

    Article  PubMed  CAS  Google Scholar 

  49. Kania G, Corbeil D, Fuchs J, Tarasov KV, Blyszczuk P, Huttner WB, Boheler KR, Wobus AM (2005) Somatic stem cell marker prominin-1/CD133 is expressed in embryonic stem cell-derived progenitors. Stem Cells 23:791–804

    Article  PubMed  CAS  Google Scholar 

  50. Oshima Y, Suzuki A, Kawashimo K, Ishikawa M, Ohkohchi N, Taniguchi H (2007) Isolation of mouse pancreatic ductal progenitor cells expressing CD133 and c-Met by flow cytometric cell sorting. Gastroenterology 132:720–732

    Article  PubMed  CAS  Google Scholar 

  51. Sugiyama T, Rodriguez RT, McLean GW, Kim SK (2007) Conserved markers of fetal pancreatic epithelium permit prospective isolation of islet progenitor cells by FACS. Proc Natl Acad Sci U S A 104:175–180

    Article  PubMed  CAS  Google Scholar 

  52. Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, van Es JH, Abo A, Kujala P, Peters PJ, Clevers H (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature (Lond) 459:262–265

    Article  CAS  Google Scholar 

  53. Kim S, Shin JS, Kim HJ, Fisher RC, Lee MJ, Kim CW (2007) Streptozotocin-induced diabetes can be reversed by hepatic oval cell activation through hepatic transdifferentiation and pancreatic islet regeneration. Lab Invest 87:702–712

    Article  PubMed  CAS  Google Scholar 

  54. Koblas T, Harman SM, Saudek F (2005) The application of umbilical cord blood cells in the treatment of diabetes mellitus. Rev Diabet Stud 2:228–234

    Article  PubMed  Google Scholar 

  55. Chang CM, Kao CL, Chang YL, Yang MJ, Chen YC, Sung BL, Tsai TH, Chao KC, Chiou SH, Ku HH (2007) Placenta-derived multipotent stem cells induced to differentiate into insulin-positive cells. Biochem Biophys Res Commun 357:414–420

    Article  PubMed  CAS  Google Scholar 

  56. Ianus A, Holz GG, Theise ND, Hussain MA (2003) In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J Clin Invest 111:843–850

    PubMed  CAS  Google Scholar 

  57. Urban VS, Kiss J, Kovacs J, Gocza E, Vas V, Monostori E, Uher F (2008) Mesenchymal stem cells cooperate with bone marrow cells in therapy of diabetes. Stem Cells 26:244–253

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuichi Hori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hori, Y. Insulin-producing cells derived from stem/progenitor cells: therapeutic implications for diabetes mellitus. Med Mol Morphol 42, 195–200 (2009). https://doi.org/10.1007/s00795-009-0471-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00795-009-0471-x

Key words

Navigation