Skip to main content
Log in

Effects of nicotine on the biosynthesis of carotenoids in halophilic Archaea (class Halobacteria): an HPLC and Raman spectroscopy study

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Nicotine has a profound influence on the carotenoid metabolism in halophilic Archaea of the class Halobacteria. In a study of Halobacterium salinarum, Haloarcula marismortui and Halorubrum sodomense, using different analytical techniques to monitor the production of different carotenoids as a function of the presence of nicotine, we showed that the formation of α-bacterioruberin was inhibited in all. In Hbt. salinarum, addition of nicotine led to a significant change in the color of the culture due to the accumulation of lycopene, in addition to the formation of bisanhydrobacterioruberin which does not differ in color from α-bacterioruberin. Very little or no lycopene was formed in Har. marismortui and in Hrr. sodomense; instead bisanhydrobacterioruberin was the only major carotenoid found in nicotine-amended cultures. The findings are discussed in the framework of the recently elucidated biochemical pathway for the formation of the different carotenoid pigments encountered in the Halobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Asker D, Ohta Y (1999) Production of canthaxanthin by extremely halophilic bacteria. J Biosci Bioengin 88:617–621

    Article  CAS  Google Scholar 

  • Asker D, Ohta Y (2002) Production of canthaxanthin by Haloferax alexandrinus under non-aseptic conditions and a simple, rapid method for its extraction. Appl Microbiol Biotechnol 58:743–750

    Article  CAS  PubMed  Google Scholar 

  • Calo P, de Miguel T, Sieiro C, Velazquez JB, Villa TG (1995) Ketocarotenoids in halobacteria: 3-hydroxy-echinenone and trans-astaxanthin. J Appl Bacteriol 79:282–285

    Article  CAS  Google Scholar 

  • Camacho-Córdova DI, Camacho-Ruíz RM, Córdova-López JA, Cervantes-Martínez J (2014) Estimation of bacterioruberin by Raman spectroscopy during the growth of halophilic archaeon Haloarcula marismortui. Appl Opt 53:7470–7475

    Article  PubMed  Google Scholar 

  • Chen CW, S-h Hsu, Lin M-T, Y-h Hsu (2015) Mass production of C50 carotenoids by Haloferax mediterranei in using extruded rice bran and starch under optimal conductivity of brine medium. Bioprocess Biosyst Env 38:2361–2367

    Article  Google Scholar 

  • de la Vega M, Sayago A, Ariza J, Barneto AG, León R (2016) Characterization of a bacterioruberin-producing haloarchaea isolated from the marshlands of the Odiel River in the southwest of Spain. Biotechnol Progr 32:592–600

    Article  Google Scholar 

  • de Oliveira VE, Castro HV, Edwards HGM, de Oliveira LFC (2010) Carotenes and carotenoids in natural biological samples: a Raman spectroscopic analysis. J Raman Spectrosc 41:642–650

    Article  Google Scholar 

  • Dundas ID, Larsen H (1962) The physiological role of the carotenoid pigments of Halobacterium salinarium. Arch Mikrobiol 44:233–239

    Article  CAS  Google Scholar 

  • Dundas ID, Larsen H (1963) A study on the killing by light of photosensitized cells of Halobacterium salinarium. Arch Mikrobiol 46:19–28

    Article  CAS  PubMed  Google Scholar 

  • Fang C-J, Ku K-L, Lee M-H, Su N-W (2010) Influence of nutritive factors on C50 carotenoids production by Haloferax mediterranei ATCC 33500 with two-stage cultivation. Biores Technol 101:6487–6493

    Article  CAS  Google Scholar 

  • Fendrihan S, Musso M, Stan-Lotter H (2009) Raman spectroscopy as a potential method for the detection of extremely halophilic archaea embedded in halite in terrestrial and possibly extraterrestrial samples. J Raman Spectrosc 40:1996–2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris LV, McHugh M, Hutchinson IB, Ingley R, Malherbe C, Parnell J, Marshall AO, Edwards HGM (2015) Avoiding misidentification of bands in planetary Raman spectra. J Raman Spectrosc 46:863–872

    Article  CAS  Google Scholar 

  • Hou J, Gao X, Lü Z-Z, Li Y, Zhou Y, Cui H-L (2017) In vitro antioxidant, antihemolytic and anticancer activity of the carotenoids from halophilic archaea. Curr Microbiol. https://doi.org/10.1007/s00284-017-1374-z

    Google Scholar 

  • Howes CD, Batra PP (1970) Accumulation of lycopene and inhibition of cyclic carotenoids in Mycobacterium in the presence of nicotine. Biochim Biophys Acta 222:174–179

    Article  CAS  PubMed  Google Scholar 

  • Jehlička J, Oren A (2013) Raman spectroscopy in halophile research. Front Microbiol 10:380

    Google Scholar 

  • Jehlička J, Edwards HGM, Oren A (2013) Bacterioruberin and salinixanthin carotenoids of extremely halophilic Archaea and Bacteria: a Raman spectroscopic study. Spectrosc Acta A 106:99–103

    Article  Google Scholar 

  • Jehlička J, Edwards HGM, Oren A (2014a) Raman spectroscopic of microbial pigments. Appl Environ Microbiol 80:3286–3295

    Article  PubMed  PubMed Central  Google Scholar 

  • Jehlička J, Edwards HGM, Osterrothová K, Novotná J, Nedbalová L, Kopecký J, Němec I, Oren A (2014b) Potential and limits of Raman spectroscopy for carotenoid detection in microorganisms: implications for astrobiology. Philos Trans R Soc A 372:20140199

    Article  Google Scholar 

  • Kelly M, Norgård S, Liaaen-Jensen S (1970) XXXI. C50 carotenoids of Halobacterium salinarium, especially bacterioruberin. Acta Chem Scand 24:2169–2182

    Article  CAS  PubMed  Google Scholar 

  • Kushwaha SC, Kates M (1976) Effect of nicotine on biosynthesis of C50 carotenoids in Halobacterium cutirubrum. Can J Biochem 54:824–829

    Article  CAS  PubMed  Google Scholar 

  • Kushwaha SC, Kates M (1979a) Studies on the biosynthesis of C50 carotenoids in Halobacterium cutirubrum. Can J Microbiol 25:1292–1297

    Article  CAS  PubMed  Google Scholar 

  • Kushwaha SC, Kates M (1979b) Effect of nicotine on carotenogenesis in extremely halophilic bacteria. Phytochemistry 18:2061–2062

    Article  CAS  Google Scholar 

  • Kushwaha SC, Gochnauer MB, Kushner DJ, Kates M (1974) Pigments and isoprenoid compounds in extremely and moderately halophilic bacteria. Can J Microbiol 20:241–245

    Article  CAS  PubMed  Google Scholar 

  • Kushwaha SC, Kramer JKG, Kates M (1975) Isolation and characterization of C50-carotenoid pigments and other polar isoprenoids from Halobacterium cutirubrum. Biochim Biophys Acta 398:303–314

    Article  CAS  PubMed  Google Scholar 

  • Kushwaha SC, Kates M, Porter JW (1976) Enzymatic synthesis of C40 carotenes by cell-free preparation from Halobacterium cutirubrum. Can J Biochem 54:816–823

    Article  CAS  PubMed  Google Scholar 

  • Lazrak T, Wolff G, Albrechts A-M, Nakatani Y, Ourisson G, Kates M (1988) Bacterioruberins reinforce reconstituted Halobacterium lipid membranes. Biochim Biophys Acta 939:160–162

    Article  CAS  Google Scholar 

  • Marshall CP, Leuko S, Coyle CM, Walter MR, Burns BP, Neilan BA (2007) Carotenoid analysis of halophilic archaea by resonance Raman spectroscopy. Astrobiology 7:631–643

    Article  CAS  PubMed  Google Scholar 

  • McDermott JCB, Ben-Aziz A, Singh RK, Britton G, Goodwin TW (1973a) Recent studies of carotenoid biosynthesis in bacteria. Pure Appl Chem 35:29–46

    Article  CAS  PubMed  Google Scholar 

  • McDermott JCB, Britton G, Goodwin TW (1973b) Effect of inhibitors of zeaxanthin synthesis in a Flavobacterium. J Gen Microbiol 77:161–171

    Article  CAS  Google Scholar 

  • Merlin JC (1985) Resonance Raman spectroscopy of carotenoids and carotenoid-containing systems. Pure Appl Chem 57:785–792

    Article  CAS  Google Scholar 

  • Neuman H, Galpaz N, Cunningham FX Jr, Zamir D, Hirschberg J (2014) The tomato mutation nxd1 reveals a gene necessary for neoxanthin biosynthesis and demonstrates that violaxanthin is a sufficient precursor for abscisic acid biosynthesis. Plant J 78:80–93

    Article  CAS  PubMed  Google Scholar 

  • Oren A, Rodríguez-Valera F (2001) The contribution of halophilic Bacteria to the red coloration of saltern crystallizer ponds. FEMS Microbiol Ecol 36:123–130

    CAS  PubMed  Google Scholar 

  • Rodrigo-Baños M, Garbayo I, Vílchez C, Bonete MJ, Martínez-Espinosa RM (2015) Carotenoids from haloarchaea and their potential in biotechnology. Mar Drugs 13:5508–5532

    Article  PubMed  PubMed Central  Google Scholar 

  • Ronen G, Cohen M, Zamir D, Hirschberg J (1999) Regulation of carotenoid biosynthesis during tomato fruit development: expression of the gene for lycopene epsilon-cyclase is down-regulated during ripening and is elevated in the mutant Delta. Plant J 17:341–351

    Article  CAS  PubMed  Google Scholar 

  • Rønnekleiv M, Liaaen-Jensen S (1995) Bacterial carotenoids 53, C50-carotenoids 23; carotenoids of Haloferax volcanii versus other halophilic bacteria. Biochem Syst Ecol 23:627–634

    Article  Google Scholar 

  • Rønnekleiv M, Lenes M, Norgård S, Liaaen-Jensen S (1995) Three dodecaene C50-carotenoids from halophilic bacteria. Phytochemistry 39:631–634

    Article  Google Scholar 

  • Shahmohammadi HR, Asgarani E, Terato H, Saito T, Ohyama Y, Gekko K, Yamamoto O, Ide H (1998) Protective roles of bacterioruberin and intracellular KCl in the resistance of Halobacterium salinarium against DNA-damaging agents. J Radiat Res 39:251–262

    Article  CAS  PubMed  Google Scholar 

  • Sikkandar S, Murugan K, Al-Sohaibani S, Rayappan F, Nair A, Tilton F (2013) Halophilic bacteria—a potent source of carotenoids with antioxidant and anticancer potentials. J Pure Appl Microbiol 7:2825–2830

    CAS  Google Scholar 

  • Squillaci G, Parrella R, Carbone V, Minasi P, La Cara F, Morana F (2017) Carotenoids from the extreme halophilic Haloterrigena turkmenica: identification and antioxidant activity. Extremophiles 21:933–945

    Article  CAS  PubMed  Google Scholar 

  • Straub O (1987) In: Pfander H, Gerspacher M, Rychener M, Schwabe R (eds) Key to carotenoids, 2nd edn. Birkhäuser Verlag, Basel, pp 11–218

    Chapter  Google Scholar 

  • Withnall R, Chowdhry BZ, Silver J, Edwards HGM, de Oliveira LFC (2003) Raman spectra of carotenoids in natural products. Spectrochim Acta A 59:2207–2212

    Article  Google Scholar 

  • Yang Y, Yatsunami R, Miyoko N, Fukui T, Takaichi S, Nakamura S (2015) Complete biosynthetic pathway of the C50 carotenoid bacterioruberin from lycopene in the extremely halophilic archaeon Haloarcula japonica. J Bacteriol 197:1614–1623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yatsunami R, Ando A, Yang Y, Takaichi S, Kohno M, Matsumara Y, Ideka H, Fukui T, Nakasone K, Fujita N, Sekine M, Takashina T, Nakamura S (2014) Identification of carotenoids from the extremely halophilic archaeon Haloarcula japonica. Front Microbiol 5:100

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoshimura K, Kouyama T (2008) Structural role of bacterioruberin in the trimeric structure of archaerhodopsin-2. J Mol Biol 375:1267–1281

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Lily Mana for technical assistance. AO was supported by Grant no. 2221/15 from the Israel Science Foundation. This study was further supported by the Erasmus+ inter-institutional agreement between the Charles University, Prague, and the Hebrew University of Jerusalem. JJ was funded by the Czech Science Foundation Project 17-04270S. Work in the laboratory of JH is funded by Israel Science Foundation Grant ISF 850/13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aharon Oren.

Additional information

Communicated by G. Antranikian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oren, A., Hirschberg, J., Mann, V. et al. Effects of nicotine on the biosynthesis of carotenoids in halophilic Archaea (class Halobacteria): an HPLC and Raman spectroscopy study. Extremophiles 22, 359–366 (2018). https://doi.org/10.1007/s00792-018-0995-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-018-0995-x

Keywords

Navigation