Skip to main content
Log in

Structural characterization of the lipid A from the LPS of the haloalkaliphilic bacterium Halomonas pantelleriensis

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Halomonas pantelleriensis DSM9661Τ is a Gram-negative haloalkaliphilic bacterium isolated from the sand of the volcanic Venus mirror lake, closed to seashore in the Pantelleria Island in the south of Italy. It is able to optimally grow in media containing 3–15 % (w/v) total salt and at pH between 9 and 10. To survive in these harsh conditions, the bacterium has developed several strategies that probably concern the bacteria outer membrane, a barrier regulating the exchange with the environment. In such a context, the lipopolysaccharides (LPSs), which are among the major constituent of the Gram-negative outer membrane, are thought to contribute to the restrictive membrane permeability properties. The structure of the lipid A family derived from the LPS of Halomonas pantelleriensis DSM 9661T is reported herein. The lipid A was obtained from the purified LPS by mild acid hydrolysis. The lipid A, which contains different numbers of fatty acids residues, and its partially deacylated derivatives were completely characterized by means of ESI FT-ICR mass spectrometry and chemical analysis. Preliminary immunological assays were performed, and a comparison with the lipid A structure of the phylogenetic proximal Halomonas magadiensis is also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ESI FT-ICR:

Electrospray ionization Fourier transform-ion cyclotron resonance

GC–MS:

Gas chromatography–mass spectrometry

EI–MS:

Electron ionization–mass spectrometry

NMR:

Nuclear magnetic resonance

CID MS/MS:

Collision-induced dissociation

Th1:

T helper 1

Th2:

T helper 2

IFN-γ:

Interferon-γ

TNF-α:

Tumor necrosis factor-α

IL-4:

Interleukin 4

IL-10:

Interleukin 10

References

  • Alexander C, Rietschel ET (2001) Invited review: bacterial lipopolysaccharides and innate immunity. J Endotoxin Res 7:167–202

    CAS  PubMed  Google Scholar 

  • Carillo S, Pieretti G, Parrilli E, Tutino ML, Gemma S, Molteni M, Lanzetta R, Parrilli M, Corsaro MM (2011) Structural investigation and biological activity of the lipooligosaccharide from the psychrophilic bacterium Pseudoalteromonas haloplanktis TAB 23. Chem Eur J 17:7053–7060

    Article  CAS  PubMed  Google Scholar 

  • Carillo S, Pieretti G, Lindner B, Romano I, Nicolaus B, Lanzetta R, Parrilli M, Corsaro MM (2013) The lipid A from the haloalkaliphilic bacterium Salinivibrio sharmensis strain BAGT. Mar Drugs 11:184–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corsaro MM, Gambacorta A, Iadonisi A, Lanzetta R, Naldi T, Nicolaus B, Romano I, Ummarino S, Parrilli M (2006) Structural determination of the O‐chain polysaccharide from the lipopolysaccharide of the haloalkaliphilic Halomonas pantelleriensis bacterium. Eur J Org Chem 1801–1808

  • Endo Y, Hirahara K, Yagi R, Tumes DJ, Nakayama T (2014) Pathogenic memory type Th2 cells in allergic inflammation. Trends Immunol 35:69–78

    Article  CAS  PubMed  Google Scholar 

  • Galanos C, Lüderitz O, Westphal O (1969) A new method for the extraction of R lipopolysaccharides. Eur J Biochem 9:245–249

    Article  CAS  PubMed  Google Scholar 

  • Holst O (1999) Chemical structure of the core region of lipopolysaccharides. In: Brade H, Opal S, Vogel S, Morrison DC (eds) Endotoxin in health and disease. Marcel Dekker, New York, pp 115–154

    Google Scholar 

  • Holst O (2002) Chemical structure of the core region of lipopolysaccharides—an update. Trends Glycosci Glycotechnol 14:87–103

    Article  CAS  Google Scholar 

  • Holst O, Ulmer AJ, Brade H, Flad HD, Rietschel ED (1996) Biochemistry and cell biology of bacterial endotoxins. FEMS Immunol Med Microbiol 16:83–104

    Article  CAS  PubMed  Google Scholar 

  • Ialenti A, Di Meglio P, Grassia G, Maffia P, Di Rosa M, Lanzetta R, Molinaro A, Silipo A, Grant W, Ianaro A (2006) A novel lipid A from Halomonas magadiensis inhibits enteric LPS-induced human monocyte activation. Eur J Immunol 36:354–360

    Article  CAS  PubMed  Google Scholar 

  • Kim KK, Lee KC, Oh H-M, Lee J-S (2010) Halomonas stevensii sp. nov., Halomonas hamiltonii sp. nov. and Halomonas johnsoniae sp. nov., isolated from a renal care centre. Int J Syst Evol Microbiol 60:369–377

    Article  PubMed  Google Scholar 

  • Kondakov A, Lindner B (2005) Structural characterization of complex bacterial glycolipids by Fourier transform mass spectrometry. Eur J Mass Spectrom 11:535–546

    Article  CAS  Google Scholar 

  • Moran AP, Lindner B, Walsh EJ (1997) Structural characterization of the lipid A component of Helicobacter pylori rough-and smooth-form lipopolysaccharides. J Bacteriol 179:6453–6463

    CAS  PubMed  PubMed Central  Google Scholar 

  • Persing DH, Coler RN, Lacy MJ, Johnson DA, Baldridge JR, Hershberg RM, Reed SG (2002) Taking toll: lipid A mimetics as adjuvants and immunomodulators. Trends Microbiol 10:S32–S37

    Article  CAS  PubMed  Google Scholar 

  • Pieretti G, Corsaro MM, Lanzetta R, Parrilli M, Nicolaus B, Gambacorta A, Lindner B, Holst O (2008) Structural characterization of the core region of the lipopolysaccharide from the haloalkaliphilic Halomonas pantelleriensis: identification of the biological O-antigen repeating unit. Eur J Org Chem 721–728

  • Pieretti G, Cipolletti M, D’Alonzo D, Alfano A, Cimini D, Cammarota M, Palumbo G, Giuliano M, De Rosa M, Schiraldi C, Parrilli M, Bedini E, Corsaro MM (2014) A combined fermentative-chemical approach for the scalable production of pure E. coli monophosphoryl lipid A. Appl Microbiol Biotechnol 98:7781–7791

    Article  CAS  PubMed  Google Scholar 

  • Rietschel ET, Kirikae T, Schade FU, Ulmer AJ, Holst O, Brade H, Schmidt G, Mamat U, Grimmecke H-D, Kusumoto S, Zähringer U (1993) The chemical structure of bacterial endotoxin in relation to bioactivity. Immunobiology 187:169–190

    Article  CAS  PubMed  Google Scholar 

  • Romano I, Nicolaus B, Lama L, Manca MC, Gambacorta A (1996) Characterization of a haloalkaliphilic strictly aerobic bacterium, isolated from Pantelleria island. Syst Appl Microbiol 19:326–333

    Article  Google Scholar 

  • Romano I, Nicolaus B, Lama L, Travaso D, Caracciolo G, Gambacorta A (2001) Accumulation of osmoprotectants and lipid pattern modulation in response to growth conditions by Halomonas pantelleriensis. Syst Appl Microbiol 24:342–352

    Article  CAS  PubMed  Google Scholar 

  • Seydel U, Oikawa M, Fukase K, Kusumoto S, Brandenburg K (2000) Intrinsic conformation of lipid A is responsible for agonistic and antagonistic activity. Eur J Biochem 267:3032–3039

    Article  CAS  PubMed  Google Scholar 

  • Silipo A, Lanzetta R, Amoresano A, Parrilli M, Molinaro A (2002) Ammonium hydroxide hydrolysis a valuable support in the MALDI-TOF mass spectrometry analysis of lipid A fatty acid distribution. J Lipid Res 43:2188–2195

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Michela Corsaro.

Additional information

Communicated by A. Oren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carillo, S., Pieretti, G., Casillo, A. et al. Structural characterization of the lipid A from the LPS of the haloalkaliphilic bacterium Halomonas pantelleriensis . Extremophiles 20, 687–694 (2016). https://doi.org/10.1007/s00792-016-0858-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-016-0858-2

Keywords

Navigation