Skip to main content
Log in

Melanin production by a yeast strain XJ5-1 of Aureobasidium melanogenum isolated from the Taklimakan desert and its role in the yeast survival in stress environments

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

The yeast strain XJ5-1 isolated from the Taklimakan desert soil was identified to be a strain of Aureobasdium melanogenum and could produce a large amount of melanin when it was grown in the PDA medium, but its melanin biosynthesis and expression of the PKS gene responsible for the melanin biosynthesis was significantly repressed in the presence of (NH4)2SO4. However, A. melanogenum P5 strain isolated from a mangrove ecosystem grown in both the presence and the absence of (NH4)2SO4 did not produce any melanin. The cell size of A. melanogenum XJ5-1 strain was much higher than that of A. melanogenum P5 strain. The melanized cells of the yeast strain XJ5-1 had higher tolerance to UV radiation, oxidation (200.0 mM H2O2), heat treatment (40 °C), salt shock (200.0 g/L NaCl), desiccation and strong acid hydrolysis (6.0 M HCl) at high temperature (80 °C) than the non-melanized cells of the same yeast strain XJ5-1. At the same time, the melanized cells of the yeast strain XJ5-1 also had higher tolerance to UV radiation, oxidation (200.0 mM H2O2), desiccation and strong acid hydrolysis (6.0 M HCl) at high temperature (80 °C) than A. melanogenum P5 strain, but had similar resistance to heat treatment (40 °C) and salt shock (200.0 g/L NaCl) compared to those of A. melanogenum P5 strain. All the results revealed that many characteristics of A. melanogenum XJ5-1 isolated from the Taklimakan desert soil was different from those of A. melanogenum P5 strain isolated from the mangrove ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abu-Ghosh S, Droby S, Korine C (2014) Seasonal and plant-dependent variations in diversity, abundance and stress tolerance of epiphytic yeasts in desert habitats. Environ Microbiol Rep 6:373–382

    Article  CAS  PubMed  Google Scholar 

  • Akamatsu HO, Chilvers MI, Stewart JE, Tobin L, Peever PL (2010) Identification and function of a polyketide synthase gene responsible for 1,8-dihydroxynaphthalene-melanin pigment biosynthesis in Ascochyta rabiei. Curr Genet 56:349–360

    Article  CAS  PubMed  Google Scholar 

  • Arenz BE, Blachette RA (2011) Distribution and abundance of soil fungi in Antarctica at sites of the Peninsula, Ross Sea region and McMudo Dry Valleys. Soil Biol Biochem 43:308–315

    Article  CAS  Google Scholar 

  • Chi ZM, Liu TT, Chi Z, Liu GL, Wang ZP (2012) Occurrence and diversity of yeasts in the mangrove ecosystems in Fujian, Guangdong and Hainan Provinces of China. Ind J Microbiol 52:346–353

    Article  Google Scholar 

  • Connell L, Redman R, Craig S, Rodriguez R (2006) Distribution and abundance of fungi in the soils of Taylor Valley, Antarctica. Soil Biol Biochem 38:3083–3094

    Article  CAS  Google Scholar 

  • Dadachova K, Casadevall A (2008) Ionizing radiation: how fungi cope, adapt, and exploit with the help of melanin. Curr Opin Microbiol 11:525–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eisenman HC, Casadevall A (2012) Synthesis and assembly of fungal melanin. Appl Microbiol Biotechnol 93:931–940

    Article  CAS  PubMed  Google Scholar 

  • Fell JW, Scorzetti G, Connell L, Craig S (2006) Biodiversity of microeukaryotes in Antarctic Dry Valley soils with <5 % soil moisture. Soil Biol Biochem 38:3107–3119

    Article  CAS  Google Scholar 

  • Fernandez CW, Koide RT (2013) The function of melanin in the ectomycorrhizal fungus Cenococcum geophilum under water stress. Fung Ecol 6:479–486

    Article  Google Scholar 

  • Ganesh Kumar C, Mongolla P, Pombala S, Kamle A, Joseph J (2011) Physicochemical characterization and antioxidant activity of melanin from a novel strain of Aspergillus bridgeri ICTF-201. Lett Appl Microbiol 53:350–358

    Article  PubMed  Google Scholar 

  • Gorbushina AA, Kotlova ER, Sherstneva OA (2008) Cellular responses of microcolonial rock fungi to long-term desiccation and subsequent rehydration. Stud Mycol 61:91–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gostinčar C, Ohm RA, Kogej T, Sonjak S, Turk M, Zajc J, Zalar P, Grube M, Sun H, Han J, Sharma A, Chiniquy J, Yee Ngan CY, Lipzen A, Barry K, Grigoriev IV, Gunde-Cimerman N (2014) Genome sequencing of four Aureobasidium pullulans varieties: biotechnological potential, stress tolerance, and description of new species. BMC Genom 15:549–550

    Article  Google Scholar 

  • Grishkan I, Nevo E (2010) Spatiotemporal distribution of soil microfungi in the Makhtesh Ramon area, central Negev desert, Israel. Fung Ecol 3:326–337

    Article  Google Scholar 

  • H€olker U, Bend J, Pracht R, M€uller T, Tetsch L, de Hoog GS (2004) Hortaea acidophila, a new acidophilic black yeast from lignite. Antonie Van Leeuwenhoek 86:287–294

    Article  PubMed  Google Scholar 

  • Kejzar A, Gobec S, Plemenitas A, Lenassi M (2013) Melanin is crucial for growth of the black yeast Hortaea werneckii in its natural hypersaline environment. Fun Biol 117:368–379

    Article  CAS  Google Scholar 

  • Kumar CG, Mongolla P, Pombala S, Kamle A, Joseph J (2011) Physicochemical characterization and antioxidant activity of melanin from a novel strain of Aspergillus bridgeri ICTF-201. Lett Appl Microbiol 53:350–358

    Article  CAS  PubMed  Google Scholar 

  • Kuncic MK, Kogej T, Drobne D, Gunde-Cimerman N (2010) Morphological response of the halophilic fungal genus Wallemia to high salinity. Appl Environ Microbiol 76:329–337

    Article  CAS  Google Scholar 

  • Kurtzman CP, Fell JW (2000) The yeasts. A taxonomic study, 4th revised and enlarged edn. Elsevier, Amsterdam, pp 222–360

    Google Scholar 

  • Li C, Lei J, Zhao Y, Xu X, Li S (2015) Effect of saline water irrigation on soil development and plant growth in the Taklimakan Desert Highway shelterbelt. Soil Tillage Res 146:99–107

    Article  Google Scholar 

  • Liu GL, Wang DS, Wang LF, Zhao SF, Chi ZM (2011) Mig1is involved in mycelial formation and expression of the genes encoding extracellular enzymes in Saccharomycopsis fibuligera A11. Fun Genet Biol 48:904–909

    Article  CAS  Google Scholar 

  • Liu YY, Chi Z, Wang ZP, Liu GL, Chi ZM (2014) Heavy oils, principally long-chain n-alkanes secreted by Aureobasidium pullulans var. melanogenum strain P5 isolated from mangrove system. J Indu Microbiol Biotechnol 41:1329–1337

    Article  CAS  Google Scholar 

  • Loppnau P, Tanguay P, Breuil C (2004) Isolation and disruption of the melanin pathway polyketide synthase gene of the softwood deep stain fungus Ceratocystis resinifera. Fung Genet Biol 41:33–41

    Article  CAS  Google Scholar 

  • Lu Y, Ye M, Song S, Li L, Shaikh F, Li J (2014) Isolation, purification, and anti-aging activity of melanin from Lachnum singerianum. Appl Biochem Biotechnol 174:762–771

    Article  CAS  PubMed  Google Scholar 

  • Ma ZC, Fu WJ, Liu GL, Wang ZP, Chi ZM (2014) High-level pullulan production by Aureobasidium pullulans var. melanogenium P16 isolated from mangrove system. Appl Microbiol Biotechnol 98:4865–4873

    Article  CAS  PubMed  Google Scholar 

  • Onofri S, Selbmann L, Zucconi L, Tosi S, de Hoog GS (2004a) The mycota of continental Antarctica. Terra Antartica Rep 11:37–42

    Google Scholar 

  • Onofri S, Selbmann L, Zucconi L, Pagano S (2004b) Antarctic microfungi as models for exobiology. Planet Space Sci 52:229–237

    Article  Google Scholar 

  • Rødkær SV, Færgeman NJ (2014) Glucose- and nitrogen sensing and regulatory mechanisms in Saccharomyces cerevisiae. FEMS Yeast Res 14:683–696

    Article  PubMed  Google Scholar 

  • Romero-Martinez R, Wheeler M, Guerrero-Plata A, Rico G, Torres-Guerrero HE (2000) Biosynthesis and functions of melanin in Sporothrix schenckii. Infect Immun 68:3696–3703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selbmann L, de Hoog GS, Zucconi L, Isola D, Ruisi S, Gerrits van den Ende AHG, Ruibal C, De Leo F, Urz C, Onofri S (2008) Drought meets acid: three new genera in a Dothidealean clade of extremotolerant fungi. Stud Mycol 61:1–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sterflinger K (1998) Temperature NaCl-tolerance of rock-inhabiting meristematic fungi. Antonie Van Leeuwenhoek 74:271–281

    Article  CAS  PubMed  Google Scholar 

  • Sterflinger K (2005) Black yeasts and meristematic fungi: ecology, diversity and identification. In: Seckbach J (ed) The yeast handbook. Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 501–514

    Google Scholar 

  • Sterflinger K, Tesei D, Zakharova K (2012) Fungi in hot and cold deserts with particular reference to microcolonial fungi. Fung Ecol 5:453–462

    Article  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Wang CL, Li Y, Xin FH, Liu YY, Chi ZM (2014) Evaluation of single cell oil from Aureobasidium pullulans var. melanogenum P10 isolated from mangrove ecosystems for biodiesel production. Process Biochem 49:725–731

    Article  CAS  Google Scholar 

  • Xiong D, Wang Y, Tian C (2015) Transcriptomic profiles of the smoke tree wilt fungus Verticillium dahliae under nutrient starvation stresses. Mol Genet Genomics. doi:10.1007/s00438-015-1052-4

    Google Scholar 

  • Yu X, Huo L, Liu H, Chen L, Wang Y, Zhu X (2015) Melanin is required for the formation of the multi-cellular conidia in the endophytic fungus Pestalotiopsis microspora. Microbiol Res 179:1–11

    Article  CAS  PubMed  Google Scholar 

  • Zalar P, de Hoog GS, Gunde-Cimmerman N (1999) Trimmatostroma salinum, a new species from hypersaline water. Stud Mycol 43:57–62

    Google Scholar 

Download references

Acknowledgments

This study was funded by National Natural Foundation of China (Grant Number: 31561163001) and Key Laboratory of Protection and Utilization of Biological Resource in Tarim Basin (Grant Number BRZD1501).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Ming Chi.

Additional information

Communicated by M. da Costa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, H., Liu, NN., Liu, GL. et al. Melanin production by a yeast strain XJ5-1 of Aureobasidium melanogenum isolated from the Taklimakan desert and its role in the yeast survival in stress environments. Extremophiles 20, 567–577 (2016). https://doi.org/10.1007/s00792-016-0843-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-016-0843-9

Keywords

Navigation