Skip to main content

Advertisement

Log in

Microbial diversity and adaptation to high hydrostatic pressure in deep-sea hydrothermal vents prokaryotes

  • Review
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Prokaryotes inhabiting in the deep sea vent ecosystem will thus experience harsh conditions of temperature, pH, salinity or high hydrostatic pressure (HHP) stress. Among the fifty-two piezophilic and piezotolerant prokaryotes isolated so far from different deep-sea environments, only fifteen (four Bacteria and eleven Archaea) that are true hyper/thermophiles and piezophiles have been isolated from deep-sea hydrothermal vents; these belong mainly to the Thermococcales order. Different strategies are used by microorganisms to thrive in deep-sea hydrothermal vents in which “extreme” physico-chemical conditions prevail and where non-adapted organisms cannot live, or even survive. HHP is known to impact the structure of several cellular components and functions, such as membrane fluidity, protein activity and structure. Physically the impact of pressure resembles a lowering of temperature, since it reinforces the structure of certain molecules, such as membrane lipids, and an increase in temperature, since it will also destabilize other structures, such as proteins. However, universal molecular signatures of HHP adaptation are not yet known and are still to be deciphered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aguilar PS, de Mendoza D (2006) Control of fatty acid desaturation: a mechanism conserved from bacteria to humans. Mol Microbiol 62:1507–1514

    CAS  PubMed  Google Scholar 

  • Akasaka K (2006) Probing conformational fluctuation of proteins by pressure perturbation. Chem Rev 106:1814–1835. doi:10.1021/cr040440z

    CAS  PubMed  Google Scholar 

  • Akasaka K, Kitahara R, Kamatari YO (2013) Exploring the folding energy landscape with pressure. Arch Biochem Biophys 531:110–115. doi:10.1016/j.abb.2012.11.016

    CAS  PubMed  Google Scholar 

  • Alain K, Marteinsson VT, Miroshnichenko ML et al (2002a) Marinitoga piezophila sp. nov., a rod-shaped, thermo-piezophilic bacterium isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 52:1331–1339

    CAS  PubMed  Google Scholar 

  • Alain K, Olagnon M, Desbruyères D et al (2002b) Phylogenetic characterization of the bacterial assemblage associated with mucous secretions of the hydrothermal vent polychaete Paralvinella palmiformis. FEMS Microbiol Ecol 42:463–476

    CAS  PubMed  Google Scholar 

  • Alazard D (2003) Desulfovibrio hydrothermalis sp. nov., a novel sulfate-reducing bacterium isolated from hydrothermal vents. Int J Syst Evol Microbiol 53:173–178. doi:10.1099/ijs.0.02323-0

    CAS  PubMed  Google Scholar 

  • Ascone I, Savino C, Kahn R, Fourme R (2010) Flexibility of the Cu, Zn superoxide dismutase structure investigated at 0.57 GPa. Acta Crystallogr D Biol Crystallogr 66:654–663. doi:10.1107/S0907444910012321

    CAS  PubMed  Google Scholar 

  • Bale SJ, Goodman K, Rochelle PA et al (1997) Desulfovibrio profundus sp. nov., a novel barophilic sulfate-reducing bacterium from deep sediment layers in the Japan Sea. Int J Syst Bacteriol 47:515–521

    CAS  PubMed  Google Scholar 

  • Barstow B, Ando N, Kim CU, Gruner SM (2008) Alteration of citrine structure by hydrostatic pressure explains the accompanying spectral shift. Proc Natl Acad Sci USA 105:13362–13366. doi:10.1073/pnas.0802252105

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beranova J, Jemiola-Rzeminska M, Elhottova D et al (2008) Metabolic control of the membrane fluidity in Bacillus subtilis during cold adaptation. Biochim Biophys Acta-Biomembr 1778:445–453

    CAS  Google Scholar 

  • Birrien JL, Zeng X, Jebbar M et al (2011) Pyrococcus yayanosii sp. nov., an obligate piezophilic hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 61:2827–2831. doi:10.1099/ijs.0.024653-0

    CAS  PubMed  Google Scholar 

  • Boonyaratanakornkit BB, Park CB, Clark DS (2002) Pressure effects on intra- and intermolecular interactions within proteins. Biochim Biophys Acta 1595:235–249

    CAS  PubMed  Google Scholar 

  • Borges N, Ramos A, Raven NDH et al (2002) Comparative study of the thermostabilizing properties of mannosylglycerate and other compatible solutes on model enzymes. Extremophiles 6:209–216

    CAS  PubMed  Google Scholar 

  • Brown AD (1976) Microbial water stress. Bacteriol Rev 40:803–846

    CAS  PubMed Central  PubMed  Google Scholar 

  • Campbell B, Engel A, Porter M, Takai K (2006) The versatile epsilon-proteobacteria: key players in sulphidic habitats. Nat Rev Microbiol 4:458–468

    CAS  PubMed  Google Scholar 

  • Canganella F, Gonzalez JM, Yanagibayashi M, Kato C, Horikoshi K (1997) Pressure and temperature effects on growth and viability of the hyperthermophilic archaeon Thermococcus peptonophilus. Arch Microbiol 168:1–7

    CAS  PubMed  Google Scholar 

  • Canganella F, Jones WJ, Gambacorta A, Antranikian G (1998) Thermococcus guaymasensis sp. nov. and Thermococcus aggregans sp. nov., two novel thermophilic archaea isolated from the Guaymas Basin hydrothermal vent site. Int J Syst Bacteriol 48:1181–1185

    PubMed  Google Scholar 

  • Canganella F, Gambacorta A, Kato C, Horikoshi K (2000) Effects of hydrostatic pressure and temperature on physiological traits of Thermococcus guaymasensis and Thermococcus aggregans growing on starch. Microbiol Res 154:297–306

    CAS  PubMed  Google Scholar 

  • Cao Y, Chastain RA, Eloe EA, Nogi Y, Kato C, Bartlett DH (2014) Novel psychropiezophilic Oceanospirillales species Profundimonas piezophila gen. nov., sp. nov., isolated from the deep-sea environment of the Puerto Rico trench. Appl Environ Microbiol 80(1):54–60. doi:10.1128/AEM.02288-13

    CAS  PubMed Central  PubMed  Google Scholar 

  • Charlou JL, Donval JP, Fouquet Y et al (2002) Geochemistry of high H(2) and CH(4) vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36 degrees 14′N, MAR). Chem Geol 191:345–359. doi:10.1016/s0009-2541(02)00134-1

    CAS  Google Scholar 

  • Charlou JL, Donval JP, Konn C et al (2010) High production of H-2 and CH4 and abiotic hydrocarbons in ultramafic-hosted hydrothermal systems on the Mid-Atlantic Ridge. Geochim Cosmochim Acta 74:A163–A163

    Google Scholar 

  • Chong PL, Ayesa U, Daswani VP, Hur EC (2012) On physical properties of tetraether lipid membranes: effects of cyclopentane rings. Archaea 2012:138439. doi:10.1155/2012/138439

    PubMed Central  PubMed  Google Scholar 

  • Collins MD, Hummer G, Quillin ML et al (2005) Cooperative water filling of a nonpolar protein cavity observed by high-pressure crystallography and simulation. Proc Natl Acad Sci USA 102:16668–16671. doi:10.1073/pnas.0508224102

    CAS  PubMed Central  PubMed  Google Scholar 

  • Corliss JB, Ballard RD (1977) Oases of life in the cold abyss. Natl Geogr Mag 152:440–453

    Google Scholar 

  • Crépeau V, Cambon Bonavita MA, Lesongeur F, Randrianalivelo H et al (2011) Diversity and function in microbial mats from the Lucky Strike hydrothermal vent field. FEBS Lett 76:524–540

    Google Scholar 

  • Csonka LN, Hanson AD (1991) Prokaryotic osmoregulation—genetics and physiology. Annu Rev Microbiol 45:569–606

    CAS  PubMed  Google Scholar 

  • Cybulski LE, Albanesi D, Mansilla MC et al (2002) Mechanism of membrane fluidity optimization: isothermal control of the Bacillus subtilis acyl-lipid desaturase. Mol Microbiol 45:1379–1388

    CAS  PubMed  Google Scholar 

  • Da Costa MS, Santos H, Galinski EA (1998) An overview of the role and diversity of compatible solutes in Bacteria and Archaea. Adv Biochem Eng Biotechnol 61:117–153

    PubMed  Google Scholar 

  • Dannenmuller O, Arakawa K, Eguchi T et al (2000) Membrane properties of archaeal macrocyclic diether phospholipids. Chemistry (Easton) 6:645–654

    CAS  Google Scholar 

  • Dawson KS, Freeman KH, Macalady JL (2012) Molecular characterization of core lipids from halophilic archaea grown under different salinity conditions. Org Geochem 48:1–8

    CAS  Google Scholar 

  • Deming JW, Somers LK, Straube WL, Swartz DG, MacDonell MT (1988) Isolation of an obligately barophilic bacterium and description of a new genus, Colwellia gen. nov. Syst Appl Microbiol 10:152–160

    Google Scholar 

  • De Long EF, Franks DG, Yayanos AA (1997) Evolutionary relationships of cultivated psychrophilic and barophilic deep-sea bacteria. Appl Env Microbiol 63:2105–2108

    Google Scholar 

  • De Rosa M, Esposito E, Gambacorta A et al (1980a) Complex lipids of Caldariella acidophila, a thermoacidophile archaebacterium. Phytochemistry 19:821–826

    Google Scholar 

  • De Rosa M, Esposito E, Gambacorta A et al (1980b) Effects of temperature on ether lipid composition of Caldariella acidophila. Phytochemistry 19:827–831

    Google Scholar 

  • Dreyfus G, Guimaraes-Motta H, Silva J (1988) Effect of hydrostatic pressure on the mitochondrial ATP synthase. Biochemistry 27:6704–6710

    CAS  PubMed  Google Scholar 

  • Eder W, Ludwig W, Huber R (1999) Novel 16S rRNA gene sequences retrieved from highly saline brine sediments of kebrit deep, red sea. Arch Microbiol 172:213–218

    CAS  PubMed  Google Scholar 

  • Edmond JM, Vondamm KL, McDuff RE, Measures CI (1982) Chemistry of hot springs on the east pacific rise and their effluent dispersal. Nature 297:187–191. doi:10.1038/297187a0

    CAS  Google Scholar 

  • Eloe EA, Malfatti F, Gutierrez J et al (2011) Isolation and characterization of a psychropiezophilic alphaproteobacterium. Appl Env Microbiol 77:8145–8153. doi:10.1128/AEM.05204-11

    Google Scholar 

  • Empadinhas N, Marugg JD, Borges N et al (2001) Pathway for the synthesis of mannosylglycerate in the hyperthermophilic archaeon Pyrococcus horikoshii—biochemical and genetic characterization of key enzymes. J Biol Chem 276:43580–43588

    CAS  PubMed  Google Scholar 

  • Erauso G, Reysenbach AL, Godfroy A et al (1993) Pyrococcus abyssi sp-nov, a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Arch Microbiol 160:338–349

    CAS  Google Scholar 

  • Erijman L, Lorimer G, Weber G (1993) Reversible dissociation and conformational stability of dimeric ribulose bisphosphate carboxylase. Biochemistry 32:5187–5195

    CAS  PubMed  Google Scholar 

  • Ernst M, Freisleben HJ, Antonopoulos E et al (1998) Calorimetry of archaeal tetraether lipid—indication of a novel metastable thermotropic phase in the main phospholipid from Thermoplasma acidophilum cultured at 59 degrees C. Chem Phys Lipids 94:1–12

    CAS  Google Scholar 

  • Euzéby J (2013) List of prokaryotic names with standing in nomenclature. http://www.bacterio.net/number.html. Accessed 26 Jul 2013

  • Flores GE, Wagner ID, Liu Y, Reysenbach A-L (2012) Distribution, abundance, and diversity patterns of the thermoacidophilic “deep-sea hydrothermal vent euryarchaeota 2”. Front Microbiol 3:47. doi:10.3389/fmicb.2012.00047

    PubMed Central  PubMed  Google Scholar 

  • Foguel D, Suarez MC, Ferrão-Gonzales AD et al (2003) Dissociation of amyloid fibrils of alpha-synuclein and transthyretin by pressure reveals their reversible nature and the formation of water-excluded cavities. Proc Natl Acad Sci USA 100:9831–9836. doi:10.1073/pnas.1734009100

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fourme R, Ascone I, Kahn R et al (2002) Opening the high-pressure domain beyond 2 kbar to protein and virus crystallography. Structure 10:1409–1414

    CAS  PubMed  Google Scholar 

  • Fourme R, Girard E, Kahn R et al (2006) High-pressure macromolecular crystallography (HPMX): status and prospects. Biochim Biophys Acta 1764:384–390. doi:10.1016/j.bbapap.2006.01.008

    CAS  PubMed  Google Scholar 

  • Franzmann PD, Springer N, Ludwig W et al (1992) A methanogenic archaeon from Ace Lake, Antarctica: Methanococcoides burtonii sp. nov. Syst Appl Microbiol 15:573–581

    Google Scholar 

  • Galinski EA (1995) Osmoadaptation in bacteria. Adv Microb Physiol 37:272–328

    CAS  PubMed  Google Scholar 

  • Galinski EA, Truper HG (1994) Microbial behavior in salt-stressed ecosystems. FEMS Microbiol Rev 15:95–108

    CAS  Google Scholar 

  • Gerasimchuk AL, Shatalov AA, Novikov AL et al (2010) The search for sulfate-reducing bacteria in mat samples from the lost city hydrothermal field by molecular cloning. Microbiology 79:96–105. doi:10.1134/S0026261710010133

    CAS  Google Scholar 

  • Girard E, Kahn R, Mezouar M et al (2005) The first crystal structure of a macromolecular assembly under high pressure: CpMV at 330 MPa. Biophys J 88:3562–3571. doi:10.1529/biophysj.104.058636

    CAS  PubMed Central  PubMed  Google Scholar 

  • Girard E, Marchal S, Perez J et al (2010) Structure-function perturbation and dissociation of tetrameric urate oxidase by high hydrostatic pressure. Biophys J 98:2365–2373. doi:10.1016/j.bpj.2010.01.058

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gliozzi A, Rolandi R, De Rosa M, Gambacorta A (1983) Monolayer black membranes from bipolar lipids of archaebacteria and their temperature-induced structural changes. J Membr Biol 75:45–56

    CAS  PubMed  Google Scholar 

  • Goncalves LG, Lamosa P, Huber R, Santos H (2008) Di-myo-inositol phosphate and novel UDP-sugars accumulate in the extreme hyperthermophile Pyrolobus fumarii. Extremophiles 12:383–389. doi:10.1007/s00792-008-0143-0

    CAS  PubMed  Google Scholar 

  • Gonthier I, Rager MN, Metzger P et al (2001) A di-O-dihydrogeranylgeranyl glycerol from Thermococcus S557, a novel ether lipid, and likely intermediate in the biosynthesis of diethers in Archaea. Tetrahedron Lett 42:2795–2797

    CAS  Google Scholar 

  • Gorovits B, Raman C, Horowitz P (1995) High hydrostatic pressure induces the dissociation of cpn60 tetradecamers and reveals a plasticity of the monomers. J Biol Chem 270:2061–2066

    CAS  PubMed  Google Scholar 

  • Gross M, Auerbach G, Jaenicke R (1993) The catalytic activities of monomeric enzymes show complex pressure dependence. FEBS Lett 321:256–260

    CAS  PubMed  Google Scholar 

  • Hafenbradl D, Keller M, Thiericke R, Stetter KO (1993) A novel unsaturated archael ether core lipid from the hyperthermophile Methanopyrus kandleri. Syst Appl Microbiol 16:165–169

    CAS  Google Scholar 

  • Hei DJ, Clark DS (1994) Pressure stabilization of proteins from extreme thermophiles. Appl Env Microbiol 60:932–939

    CAS  Google Scholar 

  • Huber R, Kurr M, Jannasch K, Stetter K (1989) A novel group of abyssal methanogenic archaebacteria (Methanopyrus) growing at 110°C. Nature 342:833–834

    Google Scholar 

  • Huber J, Butterfield D, Baross J (2003) Bacterial diversity in a subseafloor habitat following a deep-sea volcanic eruption. FEMS Microbiol Ecol 43:393–409

    CAS  PubMed  Google Scholar 

  • Jannasch HW, Mottl MJ (1985) Geomicrobiology of deep-sea hydrothermal vents. Science 229:717–725. doi:10.1126/science.229.4715.717

    CAS  PubMed  Google Scholar 

  • Jarrell HC, Zukotynski KA, Sprott GD (1998) Lateral diffusion of the total polar lipids from Thermoplasma acidophilum in multilamellar liposomes. Biochim Biophys Acta-Biomembr 1369:259–266

    CAS  Google Scholar 

  • Johnson K, Beehler C, Sakamoto-Arnold C, Childress J (1986) In situ measurements of chemical distributions in a deep-sea hydrothermal vent field. Science 231:1139–1141

    CAS  PubMed  Google Scholar 

  • Jun X, Lupeng L, Minjuan X et al (2011) Complete genome sequence of the obligate piezophilic hyperthermophilic archaeon Pyrococcus yayanosii CH1. J Bacteriol 193:4297–4298. doi:10.1128/JB.05345-11

    PubMed Central  PubMed  Google Scholar 

  • Kallmeyer J, Pockalny R, Adhikari RR et al (2012) Global distribution of microbial abundance and biomass in subseafloor sediment. Proc Natl Acad Sci USA 109:16213–16216. doi:10.1073/pnas.1203849109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kasai R, Kitajima Y, Martin CE et al (1976) Molecular control of membrane properties during temperature acclimatation—membrane fluidity regulation of fatty acid desaturase action. Biochemistry 15:5228–5233

    CAS  PubMed  Google Scholar 

  • Kawano H, Nakasone K, Matsumoto M et al (2004) Differential pressure resistance in the activity of RNA polymerase isolated from Shewanella violacea and Escherichia coli. Extremophiles 8:367–375. doi:10.1007/s00792-004-0397-0

    CAS  PubMed  Google Scholar 

  • Khelaifia S, Fardeau M-L, Pradel N et al (2011) Desulfovibrio piezophilus sp. nov., a piezophilic, sulfate-reducing bacterium isolated from wood falls in the Mediterranean Sea. Int J Syst Evol Microbiol 61:2706–2711. doi:10.1099/ijs.0.028670-0

    CAS  PubMed  Google Scholar 

  • Lai D, Springstead JR, Monbouquette HG (2008) Effect of growth temperature on ether lipid biochemistry in Archaeoglobus fulgidus. Extremophiles 12:271–278

    CAS  PubMed  Google Scholar 

  • Lamosa P, Martins LO, Da Costa MS, Santos H (1998) Effects of temperature, salinity, and medium composition on compatible solute accumulation by Thermococcus spp. Appl Env Microbiol 64:3591–3598

    CAS  Google Scholar 

  • Lamosa P, Turner DL, Ventura R et al (2003) Protein stabilization by compatible solutes. Effect of diglycerol phosphate on the dynamics of Desulfovibrio gigas rubredoxin studied by NMR. Eur J Biochem 270:4606–4614

    CAS  PubMed  Google Scholar 

  • Lamosa P, Rodrigues MV, Gonçalves LG et al (2013) Organic solutes in the deepest phylogenetic branches of the Bacteria: identification of α(1-6)glucosyl-α(1-2)glucosylglycerate in Persephonella marina. Extremophiles 17:137–146. doi:10.1007/s00792-012-0500-x

    CAS  PubMed  Google Scholar 

  • Lauro F, Chastain R, Ferriera S et al (2013) Draft Genome Sequence of the Deep-Sea Bacterium Shewanella benthica Strain KT99. Genome Announc 1:e00210–e00213. doi:10.1128/genomeA.00210-13.Copyright

    PubMed Central  PubMed  Google Scholar 

  • Lee AG (2003) Lipid–protein interactions in biological membranes: a structural perspective. Biochim Biophys Acta 1612:1–40

    CAS  PubMed  Google Scholar 

  • Lee AG (2004) How lipids affect the activities of integral membrane proteins. Biochim Biophys Acta-Biomembr 1666:62–87

    CAS  Google Scholar 

  • Li H, Yamada H, Akasaka K (1998) Effect of pressure on individual hydrogen bonds in proteins. Basic Pancreatic trypsin inhibitor. Biochemistry 37:1167–1173

    CAS  PubMed  Google Scholar 

  • Lu B, Li Q, Liu W, Ruan K (1997) Effects of hydrostatic pressure on the activity of rat ribosome and cell-free translation system. Biochem Mol Biol Int 43:499–506

    CAS  PubMed  Google Scholar 

  • Lucas S, Han J, Lapidus A et al (2012) Complete genome sequence of the thermophilic, piezophilic, heterotrophic bacterium Marinitoga piezophila KA3. J Bacteriol 194:5974–5975. doi:10.1128/JB.01430-12

    CAS  PubMed Central  PubMed  Google Scholar 

  • Luke KA, Higgins CL, Wittung-Stafshede P (2007) Thermodynamic stability and folding of proteins from hyperthermophilic organisms. FEBS J 274:4023–4033. doi:10.1111/j.1742-4658.2007.05955.x

    CAS  PubMed  Google Scholar 

  • Macdonald AG, Martinac B (2005) Effect of high hydrostatic pressure on the bacterial mechanosensitive channel MscS. Eur Biophys J 34:434–441. doi:10.1007/s00249-005-0478-8

    CAS  PubMed  Google Scholar 

  • Madern D, Ebel C, Zaccai G (2000) Halophilic adaptation of enzymes. Extremophiles 4:91–98

    CAS  PubMed  Google Scholar 

  • Mangelsdorf K, Zink KG, Birrien JL, Toffin L (2005) A quantitative assessment of pressure dependent adaptive changes in the membrane lipids of piezosensitive deep sub-seafloor bacterium. Org Geochem 36:1459–1479

    CAS  Google Scholar 

  • Marassio G, Prangé T, David HN et al (2011) Pressure-response analysis of anesthetic gases xenon and nitrous oxide on urate oxidase: a crystallographic study. FASEB J 25:2266–2275. doi:10.1096/fj.11-183046

    CAS  PubMed  Google Scholar 

  • Marchi M, Akasaka K (2001) Simulation of hydrated BPTI at high pressure: changes in hydrogen bonding and its relation with NMR experiments. J Phys Chem B 105:711–714

    CAS  Google Scholar 

  • Marr AG, Ingraham JL (1962) Effect of temperature on the composition of fatty acids in Escherichia coli. J Bacteriol 84:1260–1267

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marteinsson VT, Birrien JL, Reysenbach AL et al (1999) Thermococcus barophilus sp. nov., a new barophilic and hyperthermophilic archaeon isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int J Syst Bacteriol 49(Pt 2):351–359

    PubMed  Google Scholar 

  • Martin DD, Bartlett DH, Roberts MF (2002) Solute accumulation in the deep-sea bacterium Photobacterium profundum. Extremophiles 6:507–514. doi:10.1007/s00792-002-0288-1

    CAS  PubMed  Google Scholar 

  • Martins LO, Santos H (1995) Accumulation of mannosylglycerate and di-myo-inosytol-phosphate by Pyrococcus furiosus in response to salinity and temperature. Appl Environ Microbiol 61:3299–3303

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martins LO, Carreto LS, DaCosta MS, Santos H (1996) New compatible solutes related to di-myo-inositol-phosphate in members of the order Thermotogales. J Bacteriol 178:5644–5651

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martins LO, Huber R, Huber H et al (1997) Organic solutes in hyperthermophilic Archaea. Appl Environ Microbiol 63:896–902

    CAS  PubMed Central  PubMed  Google Scholar 

  • Masson P, Bec N, Froment M-T et al (2004) Rate-determining step of butyrylcholinesterase-catalyzed hydrolysis of benzoylcholine and benzoylthiocholine. Volumetric study of wild-type and D70G mutant behavior. Eur J Biochem 271:1980–1990. doi:10.1111/j.1432-1033.2004.04110.x

    CAS  PubMed  Google Scholar 

  • Mathai JC, Sprott GD, Zeidel ML (2001) Molecular mechanisms of water and solute transport across archaebacterial lipid membranes. J Biol Chem 276:27266–27271

    CAS  PubMed  Google Scholar 

  • Matsuno Y, Sugai A, Higashibata H et al (2009) Effect of growth temperature and growth phase on the lipid composition of the archaeal membrane from Thermococcus kodakaraensis. Biosci Biotechnol Biochem 73:104–108. doi:10.1271/bbb.80520

    CAS  PubMed  Google Scholar 

  • McElhaney RN (1984a) The structure and function of the Acholeplasma laidlawii plasma membrane. Biochim Biophys Acta 779:1–42

    CAS  PubMed  Google Scholar 

  • McElhaney RN (1984b) The relationship between membrane fluidity and phase state and the ability of bacteria and mycoplasma to grow and survive at various temperatures. In: Manson LA (ed) Kates M. Membr. fluidity. Plenum Press, New York, pp 249–276

    Google Scholar 

  • Mombelli E, Shehi E, Fusi P, Tortora P (2002) Exploring hyperthermophilic proteins under pressure: theoretical aspects and experimental findings. Biochim Biophys Acta 25:392–396

    Google Scholar 

  • Morita T (2003) Structure-based analysis of high pressure adaptation of alpha-actin. J Biol Chem 278:28060–28066. doi:10.1074/jbc.M302328200

    CAS  PubMed  Google Scholar 

  • Nagae T, Kato C, Watanabe N (2012) Structural analysis of 3-isopropylmalate dehydrogenase from the obligate piezophile Shewanella benthica DB21MT-2 and the nonpiezophile Shewanella oneidensis MR-1. Acta Crystallogr, Sect F: Struct Biol Cryst Commun 68:265–268. doi:10.1107/S1744309112001443

    CAS  Google Scholar 

  • Neves C, da Costa MS, Santos H (2005) Compatible solutes of the hyperthermophile Palaeococcus ferrophilus: osmoadaptation and thermoadaptation in the order thermococcales. Appl Env Microbiol 71:8091–8098. doi:10.1128/AEM.71.12.8091-8098.2005

    CAS  Google Scholar 

  • Nichols DS, Miller MR, Davies NW et al (2004) Cold adaptation in the antarctic archaeon Methanococcoides burtonii involves membrane lipid unsaturation. J Bacteriol 186:8508–8515

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nishiguchi Y, Miwa T, Abe F (2008) Pressure-adaptive differences in lactate dehydrogenases of three hagfishes: Eptatretus burgeri, Paramyxine atami and Eptatretus okinoseanus. Extremophiles 12:477–480. doi:10.1007/s00792-008-0140-3

    CAS  PubMed  Google Scholar 

  • Nisius L, Grzesiek S (2012) Key stabilizing elements of protein structure identified through pressure and temperature perturbation of its hydrogen bond network. Nat Chem 4:711–717. doi:10.1038/nchem.1396

    CAS  PubMed  Google Scholar 

  • Nogi Y, Masui N, Kato C (1998) Photobacterium profundum sp. nov., a new, moderately barophilic bacterial species isolated from a deep-sea sediment. Extremophiles 2(1):1–7

    CAS  PubMed  Google Scholar 

  • Nogi Y, Kato C, Horikoshi K (2002) Psychromonas kaikoae sp. nov., a novel from the deepest piezophilic bacterium cold-seep sediments in the Japan Trench. Int J Syst Evol Microbiol 52(5):1527–1532

  • Nogi Y, Hosoya S, Kato C, Horikoshi K (2004) Colwellia piezophila sp. nov., a novel piezophilic species from deep-sea sediments of the Japan Trench. Int J Syst Evol Microbiol 54(5):1627–1631

    CAS  PubMed  Google Scholar 

  • Nunes OC, Manaia CM, Dacosta MS, Santos H (1995) Compatible solutes in the thermophilic bacteria Rhodothermus marinus and Thermus thermophilus. Appl Environ Microbiol 61:2351–2357

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nunoura T, Oida H, Nakaseama M et al (2010) Archaeal diversity and distribution along thermal and geochemical gradients in hydrothermal sediments at the Yonaguni Knoll IV hydrothermal field in the Southern Okinawa trough. Appl Env Microbiol 76:1198–1211. doi:10.1128/AEM.00924-09

    CAS  Google Scholar 

  • Occhipinti E, Bec N, Gambirasio B et al (2006) Pressure and temperature as tools for investigating the role of individual non-covalent interactions in enzymatic reactions Sulfolobus solfataricus carboxypeptidase as a model enzyme. Biochim Biophys Acta 1764:563–572. doi:10.1016/j.bbapap.2005.12.007

    CAS  PubMed  Google Scholar 

  • Oger PM, Cario A (2013) Adaptation of the membrane in Archaea. Biophys Chem. doi:10.1016/j.bpc.2013.06.020

    PubMed  Google Scholar 

  • Oger PM, Jebbar M (2010) The many ways of coping with pressure. Res Microbiol 161:799–809. doi:10.1016/j.resmic.2010.09.017

    PubMed  Google Scholar 

  • Ohmae E, Tatsuta M, Abe F et al (2008) Effects of pressure on enzyme function of Escherichia coli dihydrofolate reductase. Biochim Biophys Acta 1784:1115–1121. doi:10.1016/j.bbapap.2008.04.005

    CAS  PubMed  Google Scholar 

  • Ohmae E, Murakami C, Tate S et al (2012) Pressure dependence of activity and stability of dihydrofolate reductases of the deep-sea bacterium Moritella profunda and Escherichia coli. Biochim Biophys Acta 1824:511–519. doi:10.1016/j.bbapap.2012.01.001

    CAS  PubMed  Google Scholar 

  • Orcutt BN, Bach W, Becker K et al (2011) Colonization of subsurface microbial observatories deployed in young ocean crust. ISME J 5:692–703. doi:10.1038/ismej.2010.157

    CAS  PubMed Central  PubMed  Google Scholar 

  • Page A, Juniper S, Olagnon M et al (2004) Microbial diversity associated with a Paralvinella sulfincola tube and the adjacent substratum on an active deep-sea vent chimney. Geobiology 2:225–238

    Google Scholar 

  • Paull CK, Hecker B, Commeau R et al (1984) Biological communities at the Florida escarpment resemble hydrothermal vent taxa. Science 226:965–967

    CAS  Google Scholar 

  • Refaee M, Tezuka T, Akasaka K, Williamson MP (2003) Pressure-dependent Changes in the solution structure of hen egg-white lysozyme. J Mol Biol 327:857–865. doi:10.1016/S0022-2836(03)00209-2

    CAS  PubMed  Google Scholar 

  • Reysenbach AL, Longnecker K, Kirshtein J (2000) Novel bacterial and archaeal lineages from an in situ growth chamber deployed at a Mid-Atlantic Ridge hydrothermal vent. Appl Env Microbiol 66:3798–3806

    CAS  Google Scholar 

  • Reysenbach AL, Gotz D, Banta A et al (2002) Expanding the distribution of the Aquificales to the deep-sea vents on Mid-Atlantic ridge and central Indian Ocean ridge. Cah Biol Mar 43:425–428

    Google Scholar 

  • Robb FT, Clark DS (1999) Adaptation of proteins from hyperthermophiles to high pressure and high temperature. J Mol Microbiol Biotechnol 1:101–105

    CAS  PubMed  Google Scholar 

  • Roche J, Caro JA, Norberto DR et al (2012) Cavities determine the pressure unfolding of proteins. Proc Natl Acad Sci USA 109:6945–6950. doi:10.1073/pnas.1200915109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rosenbaum E, Gabel F, Durá MA et al (2012) Effects of hydrostatic pressure on the quaternary structure and enzymatic activity of a large peptidase complex from Pyrococcus horikoshii. Arch Biochem Biophys 517:104–110. doi:10.1016/j.abb.2011.07.017

    CAS  PubMed  Google Scholar 

  • Rouget J-B, Aksel T, Roche J et al (2011) Size and Sequence and the Volume Change of Protein Folding. J Am Chem Soc 133:6020–6027. doi:10.1021/ja200228w.Size

    CAS  PubMed Central  PubMed  Google Scholar 

  • Roussel EG, Konn C, Charlou JL et al (2011) Comparison of microbial communities associated with three Atlantic ultramafic hydrothermal systems. FEMS Microbiol Ecol 77:647–665. doi:10.1111/j.1574-6941.2011.01161.x

    CAS  PubMed  Google Scholar 

  • Russell NJ, Nichols DS (1999) Polyunsaturated fatty acids in marine bacteria–a dogma rewritten. Microbiology 145(Pt 4):767–779

    CAS  PubMed  Google Scholar 

  • Santos H, da Costa MS (2001) Organic solutes from thermophiles and hyperthermophiles. Methods Enzym 334:302–315

    CAS  Google Scholar 

  • Santos H, da Costa MS (2002) Compatible solutes of organisms that live in hot saline environments. Env Microbiol 4:501–509

    CAS  Google Scholar 

  • Sawle L, Ghosh K (2011) How do thermophilic proteins and proteomes withstand high temperature? Biophys J 101:217–227

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schrenk M, Kelley D, Bolton S, Baross J (2004) Low archaeal diversity linked to subseafloor geochemical processes at the Lost City Hydrothermal Field, Mid-Atlantic Ridge. Env Microbiol 6:1086–1095

    CAS  Google Scholar 

  • Shimada H, Nemoto N, Shida Y et al (2008) Effects of pH and temperature on the composition of polar lipids in Thermoplasma acidophilum HO-62. J Bacteriol 190:5404–5411

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sinensky M (1971) Temperature control of phospholipid biosynthesis in Escherichia coli. J Bacteriol 106:449–455

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sinensky M (1974) Homeoviscous adaptation—Homerostatic process that regulates viscosity of membrane lipids in Escherichia coli. Proc Natl Acad Sci USA 71:522–525

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sprott GD, Meloche M, Richards JC (1991) Proportions of diether, macrocyclic diether, and tetraether lipids in Methanococcus jannaschii grown at different temperatures. J Bacteriol 173:3907–3910

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stewart LC, Kates M, Ekiel IH, Smith ICP (1990) Molecular order and dynnamics of diphytanylglycerol phospholipids - A 2H NMR and 31P NMR study. Chem Phys Lipids 54:115–129

    CAS  Google Scholar 

  • Sun MM, Tolliday N, Vetriani C et al (1999) Pressure-induced thermostabilization of glutamate dehydrogenase from the hyperthermophile Pyrococcus furiosus. Protein Sci 8:1056–1063. doi:10.1110/ps.8.5.1056

    CAS  PubMed Central  PubMed  Google Scholar 

  • Suzuki Y, Sasaki T, Suzuki M et al (2005) Novel chemoautotrophic endosymbiosis between a member of the Epsilonproteobacteria and the hydrothermal-vent gastropod Alviniconcha aff. hessleri (Gastropoda: Provannidae) from the Indian Ocean. Appl Env Microbiol 71:5440–5450. doi:10.1128/AEM.71.9.5440-5450.2005

    CAS  Google Scholar 

  • Sylvan JB, Pyenson BC, Rouxel O et al (2012) Time-series analysis of two hydrothermal plumes at 9°50′N East Pacific Rise reveals distinct, heterogeneous bacterial populations. Geobiology 10:178–192. doi:10.1111/j.1472-4669.2011.00315.x

    CAS  PubMed  Google Scholar 

  • Takai K, Horikoshi K (1999) Genetic diversity of archaea in deep-sea hydrothermal vent environments. Genetics 152:1285–1297

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takai K, Horikoshi K (2000) Thermosipho japonicus sp. nov., an extremely thermophilic bacterium isolated from a deep-sea hydrothermal vent in Japan. Extremophiles 4:9–17

    CAS  PubMed  Google Scholar 

  • Takai K, Nakamura K (2011) Archaeal diversity and community development in deep-sea hydrothermal vents. Curr Opin Microbiol 14:282–291. doi:10.1016/j.mib.2011.04.013

    PubMed  Google Scholar 

  • Takai K, Sugai A, Itoh T, Horikoshi K (2000) Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 50(Pt 2):489–500

    CAS  PubMed  Google Scholar 

  • Takai K, Komatsu T, Inagaki F, Horikoshi K (2001) Distribution of archaea in a black smoker chimney structure. Appl Env Microbiol 67:3618–3629. doi:10.1128/AEM.67.8.3618-3629.2001

    CAS  Google Scholar 

  • Takai K, Nakamura K, Toki T et al (2008) Cell proliferation at 122 degrees C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc Natl Acad Sci USA 105:10949–10954. doi:10.1073/pnas.0712334105

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takai K, Miyazaki M, Hirayama H et al (2009) Isolation and physiological characterization of two novel, piezophilic, thermophilic chemolithoautotrophs from a deep-sea hydrothermal vent chimney. Environ Microbiol 11:1983–1997. doi:10.1111/j.1462-2920.2009.01921.x

    PubMed  Google Scholar 

  • Teske A, Hinrichs K, Edgcomb V et al (2002) Microbial diversity of hydrothermal sediments in the Guaymas basin: evidence for anaerobic methanotrophic communities †. Appl Environ Microbiol 68:1994–2007. doi: 10.1128/AEM.68.4.1994

    CAS  PubMed Central  PubMed  Google Scholar 

  • Uda I, Sugai A, Itoh YH, Itoh T (2001) Variation in molecular species of polar lipids from Thermoplasma acidophilum depends on growth temperature. Lipids 36:103–105

    CAS  PubMed  Google Scholar 

  • Uda Y, Sugai A, Itoh YH, Itoh T (2004) Variation in molecular species of core lipids from the order Thermoplasmales strains depends on the growth temperature. J Oleo Sci 53:399–404

    CAS  Google Scholar 

  • Van de Vossenberg J, Driessen AJM, da Costa MS, Konings WN (1999) Homeostasis of the membrane proton permeability in Bacillus subtilis grown at different temperatures. Biochim Biophys Acta-Biomembr 1419:97–104

    Google Scholar 

  • Van Dover CL, German CR, Speer KG et al (2002) Evolution and biogeography of deep-sea vent and seep invertebrates. Science 295:1253–1257. doi:10.1126/science.1067361

    PubMed  Google Scholar 

  • Vannier P, Marteinsson VT, Fridjonsson OH et al (2011) Complete genome sequence of the hyperthermophilic, piezophilic, heterotrophic, and carboxydotrophic archaeon Thermococcus barophilus MP. J Bacteriol 193:1481–1482. doi:10.1128/JB.01490-10

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544

    CAS  PubMed Central  PubMed  Google Scholar 

  • Von Damm KL (2000) Chemistry of hydrothermal vent fluids from 9 degrees-10 degrees N, East Pacific Rise: “Time zero”, the immediate posteruptive period. J Geophys Res Earth 105:11203–11222. doi:10.1029/1999jb900414

    Google Scholar 

  • Vreeland RH (1987) Mechanisms of halotolerance in microorganisms. Crit Rev Microbiol 14:311–356. doi:10.3109/10408418709104443

    CAS  PubMed  Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95:6578–6583

    CAS  PubMed Central  PubMed  Google Scholar 

  • Winter R (2002) Effect of lipid chain length, temperature, pressure and composition on the lateral organisation and phase behavior of lipid bilayer/gramicidin mixtures. Biophys J 82:153A–153A

    Google Scholar 

  • Winter R, Jeworrek C (2009) Effect of pressure on membranes. Soft Matter 5:3157–3173

    CAS  Google Scholar 

  • Xu Y, Nogi Y, Kato C, Liang Z, Rüger HJ, De Kegel D, Glansdorff N (2003) Psychromonas profunda sp. nov., a psychropiezophilic bacterium from deep Atlantic sediments. Int J Syst Evol Microbiol 53(2):527–532

    CAS  PubMed  Google Scholar 

  • Yamauchi K (1993) Doi K, Yoshida Y, Kinoshita M Archaebacterial lipids: highly proton-impermeable membranes from 1,2-diphytanyl-sn-glycero-3- phosphocholine. BiochimBiophysActa 1146:178–182

    CAS  Google Scholar 

  • Yano Y, Nakayama A, Ishihara K, Saito H (1998) Adaptive changes in membrane lipids of barophilic bacteria in response to changes in growth pressure. Appl Env Microbiol 64:479–485

    CAS  Google Scholar 

  • Yayanos AA, Dietz AS, Vanboxtel R (1979) Isolation of a deep-sea barophilic bacterium and some of its growth characteristics. Science 205:808–810

    CAS  PubMed  Google Scholar 

  • Yayanos AA, Dietz AS, Van Boxtel R (1981) Obligately barophilic bacterium from the Mariana trench. Proc Natl Acad Sci USA 78:5212–5215

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zeng X, Birrien JL, Fouquet Y et al (2009) Pyrococcus CH1, an obligate piezophilic hyperthermophile: extending the upper pressure-temperature limits for life. ISME J 3:873–876. doi:10.1038/ismej.2009.21

    CAS  PubMed  Google Scholar 

  • Zeng X, Zhang X, Jiang L et al (2012) Palaeococcus pacificus sp. nov., a novel archaeon from a deep-sea hydrothermal sediment. Int J Syst Evol Microbiol 63:2155–2159. doi:10.1099/ijs.0.044487-0

    PubMed  Google Scholar 

  • Zeng X, Zhang X, Jiang L, Alain A, Jebbar M, Shao Z (2013) Palaeococcus pacificus sp. nov., a novel archaeon from a deep-sea hydrothermal sediment. IJSEM 63:2155–2159

    CAS  PubMed  Google Scholar 

  • Zeng X, Zhang Z, Li X et al (2015) Anoxybacter fermentans gen. nov., sp. nov., a piezophilic, thermophilic, anaerobic, fermentative bacterium isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 65:710–715

    PubMed  Google Scholar 

  • Zhao W, Zeng X, Xiao X (2015) Thermococcus eurythermalis sp. nov., a conditional piezophilic, hyperthermophilic archaeon with a wide temperature range for growth, isolated from an oil-immersed chimney in the Guaymas Basin. Int J Syst Evol Microbiol 65:30–35

    PubMed  Google Scholar 

  • Zobell CE, Johnson FH (1949) The Influence of Hydrostatic Pressure on the Growth and Viability of Terrestrial and Marine Bacteria. J Bacteriol 57:179–189

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Agence Nationale de la Recherche (ANR-10-BLAN-1725 01-Living deep). We are indebted to Helen McCombie [Bureau de Traduction de l’Université (BTU), Université de Bretagne Occidentale-Brest] for helpful language improvement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Jebbar.

Additional information

Communicated by S. Albers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jebbar, M., Franzetti, B., Girard, E. et al. Microbial diversity and adaptation to high hydrostatic pressure in deep-sea hydrothermal vents prokaryotes. Extremophiles 19, 721–740 (2015). https://doi.org/10.1007/s00792-015-0760-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-015-0760-3

Keywords

Navigation