Skip to main content
Log in

Experimental and statistical analysis of nutritional requirements for the growth of the extremophile Deinococcus geothermalis DSM 11300

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Few studies concerning the nutritional requirements of Deinococcus geothermalis DSM 11300 have been conducted to date. Three defined media compositions have been published for the growth of this strain but they were found to be inadequate to achieve growth without limitation. Furthermore, growth curves, biomass concentration and growth rates were generally not available. Analysis in Principal Components was used in this work to compare and consequently to highlight the main compounds which differ between published chemically defined media. When available, biomass concentration, and/or growth rate were superimposed to the PCA analysis. The formulations of the media were collected from existing literature; media compositions designed for the growth of several strains of Deinococcaceae or Micrococcaceae were included. The results showed that a defined medium adapted from Holland et al. (Appl Microbiol Biotechnol 72:1074–1082, 2006) was the best basal medium and was chosen for further studies. A growth rate of 0.03 h−1 and a final OD600nm of 0.55 were obtained, but the growth was linear. Then, the effects of several medium components on oxygen uptake and biomass production by Deinococcus geothermalis DSM 11300 were studied using a respirometry-based method, to search for the nutritional limitation. The results revealed that the whole yeast extract in the medium with glucose is necessary to obtain a non-limiting growth of Deinococcus geothermalis DSM 11300 at a maximum growth rate of 0.64 h−1 at 45 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adak S, Bilwes AM, Panda K et al (2002) Cloning, expression, and characterization of a nitric oxide synthase protein from Deinococcus radiodurans. Proc Natl Acad Sci USA 99:107–112

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Brim H, Venkateswaran A, Kostandarithes HM et al (2003) Engineering Deinococcus geothermalis for bioremediation of high-temperature radioactive waste environments. Appl Environ Microbiol 69:4575–4582

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Brooks BW, Murray RGE (1981) Nomenclature for “Micrococcus radiodurans” and other radiation-resistant cocci: Deinococcaceae fam. nov. and Deinococcus gen. nov., including five species. Int J Syst Bacteriol 31:353–360

    Article  Google Scholar 

  • Brown MR, Barrett SM, Volkman JK et al (1996) Biochemical composition of new yeasts and bacteria evaluated as food for bivalve aquaculture. Aquaculture 143:341–360

    Article  CAS  Google Scholar 

  • Chou FI, Tan ST (1990) Manganese(II) induces cell division and increases in superoxide dismutase and catalase activities in an aging deinococcal culture. J Bacteriol 172:2029–2035

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cocaign-Bousquet M, Garrigues C, Novak L et al (1995) Rational development of a simple synthetic medium for the sustained growth of Lactococcus lactis. J Appl Microbiol 79:108–116

    CAS  Google Scholar 

  • Crane BR (2008) The enzymology of nitric oxide in bacterial pathogenesis and resistance. Biochem Soc Trans 36:1149–1154

    Article  PubMed  CAS  Google Scholar 

  • Daly MJ, Gaidamakova EK, Matrosova VY et al (2004) Accumulation of Mn(II) in Deinococcus radiodurans facilitates gamma-radiation resistance. Science 306:1025–1028

    Article  PubMed  CAS  Google Scholar 

  • Di Trapani D, Capodici M, Cosenza A et al (2011) Evaluation of biomass activity and wastewater characterization in a UCT-MBR pilot plant by means of respirometric techniques. Desalination 269:190–197

    Article  Google Scholar 

  • Ferreira AC, Nobre MF, Rainey FA et al (1997) Deinococcus geothermalis sp. nov. and Deinococcus murrayi sp. nov., two extremely radiation-resistant and slightly thermophilic species from hot springs. Int J Syst Bacteriol 47:939–947

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Ochoa F, Gomez E, Santos VE, Merchuk JC (2010) Oxygen uptake rate in microbial processes: an overview. Biochem Eng J 49:289–307

    Article  CAS  Google Scholar 

  • He Y (2009) High cell density production of Deinococcus radiodurans under optimized conditions. J Ind Microbiol Biotechnol 36:539–546

    Article  PubMed  CAS  Google Scholar 

  • Holland A, Rothfuss H, Lidstrom M (2006) Development of a defined medium supporting rapid growth for Deinococcus radiodurans and analysis of metabolic capacities. Appl Microbiol Biotechnol 72:1074–1082

    Article  PubMed  CAS  Google Scholar 

  • Knivett VA, Cullen J, Jackson MJ (1965) Odd-numbered fatty acids in Micrococcus radiodurans. Biochem J 96:2c–3c

    PubMed  CAS  Google Scholar 

  • Kolari M, Schmidt U, Kuismanen E, Salkinoja-Salonen MS (2002) Firm but slippery attachment of Deinococcus geothermalis. J Bacteriol 184:2473–2480

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kongpol A, Kato J, Vangnai AS (2008) Isolation and characterization of Deinococcus geothermalis T27, a slightly thermophilic and organic solvent-tolerant bacterium able to survive in the presence of high concentrations of ethyl acetate. FEMS Microbiol Lett 286:227–235

    Article  PubMed  CAS  Google Scholar 

  • Koser SA, Saunders F (1938) Accessory growth factors for bacteria and related microorganisms. Bacteriol Rev 2:99–160

    PubMed  CAS  PubMed Central  Google Scholar 

  • Liedert C, Peltola M, Bernhardt J et al (2012) Physiology of resistant Deinococcus geothermalis bacterium aerobically cultivated in low-manganese medium. J Bacteriol 194:1552–1561

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Little JG, Hanawalt PC (1973) Thymineless death and ultraviolet sensitivity in Micrococcus radiodurans. J Bacteriol 113:233–240

    PubMed  CAS  PubMed Central  Google Scholar 

  • Makarova KS, Aravind L, Wolf YI et al (2001) Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol Mol Biol Rev 65:44–79

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Makarova KS, Omelchenko MV, Gaidamakova EK et al (2007) Deinococcus geothermalis: the pool of extreme radiation resistance genes shrinks. PLoS One 2:e955

    Article  PubMed  PubMed Central  Google Scholar 

  • Marsili-Libelli S, Vaggi A (1997) Estimation of respirometric activities in bioprocesses. J Biotechnol 52:181–192

    Article  CAS  Google Scholar 

  • Oliveira CS, Ordaz A, Ferreira EC et al (2011) In situ pulse respirometric methods for the estimation of kinetic and stoichiometric parameters in aerobic microbial communities. Biochem Eng J 58–59:12–19

    Article  Google Scholar 

  • Paca J, Kosteckova A, Pacova L et al (2010) Respirometry kinetics of phenol oxidation by Comamonas testosteroni Pb50 under various conditions of nutritional stress. Braz Arch Biol Technol 53:1519–1528

    Article  CAS  Google Scholar 

  • Patel BA, Moreau M, Widom J et al (2009) Endogenous nitric oxide regulates the recovery of the radiation-resistant bacterium Deinococcus radiodurans from exposure to UV light. Proc Natl Acad Sci USA 106:18183–18188

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Peltola M (2011) Adhesion, presence and antifouling of Deinococcus geothermalis in paper machine environment. Dissertation, Department of Food and Environmental Sciences, Faculty of Agriculture and Forestry University of Helsinki, Helsinki, Finland

  • Reece SY, Woodward JJ, Marletta MA (2009) Synthesis of nitric oxide by the NOS-like protein from Deinococcus radiodurans: a direct role for tetrahydrofolate. Biochemistry 48:5483–5491

    Article  PubMed  CAS  Google Scholar 

  • Sunya S, Gorret N, Delvigne F et al (2012) Real-time monitoring of metabolic shift and transcriptional induction of yciG:luxCDABE E. coli reporter strain to a glucose pulse of different concentrations. J Biotechnol 157:379–390

    Article  PubMed  CAS  Google Scholar 

  • Thornley MJ, Horne RW, Glauert AM (1965) Fine structure of Micrococcus radiodurans. Archiv Fur Mikrobiologie 51:267–289

    Article  PubMed  CAS  Google Scholar 

  • Tremier A, De Guardia A, Massiani C et al (2005) A respirometric method for characterising the organic composition and biodegradation kinetics and the temperature influence on the biodegradation kinetics, for a mixture of sludge and bulking agent to be co-composted. Bioresour Technol 96:169–180

    Article  PubMed  CAS  Google Scholar 

  • Väisänen OM, Weber A, Bennasar A et al (1998) Microbial communities of printing paper machines. J Appl Microbiol 84:1069–1084

    Article  PubMed  Google Scholar 

  • Venkateswaran A, McFarlan SC, Ghosal D et al (2000) Physiologic determinants of radiation resistance in Deinococcus radiodurans. Appl Environ Microbiol 66:2620–2626

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Work E (1964) Chemical structure of bacterial cell walls: amino-acids of walls of Micrococcus radiodurans. Nature 201:1107–1109

    Article  PubMed  CAS  Google Scholar 

  • Work E, Griffiths H (1968) Morphology and chemistry of cell walls of Micrococcus radiodurans. J Bacteriol 95:641–657

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang YM, Wong TY, Chen LY et al (2000) Induction of a futile Embden-Meyerhof-Parnas pathway in Deinococcus radiodurans by Mn: possible role of the pentose phosphate pathway in cell survival. Appl Environ Microbiol 66:105–112

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang YM, Liu JK, Wong TY (2003) The DNA excision repair system of the highly radioresistant bacterium Deinococcus radiodurans is facilitated by the pentose phosphate pathway. Mol Microbiol 48:1317–1323

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the program DEINOL ISI of OSEO, the French Agency for Innovation. We gratefully acknowledge Deinol project partners for supplying the strain Deinococcus geothermalis DSM 11300 and the composition of the reference medium DM.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Gorret.

Additional information

Communicated by M. da Costa.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bornot, J., Aceves-Lara, CA., Molina-Jouve, C. et al. Experimental and statistical analysis of nutritional requirements for the growth of the extremophile Deinococcus geothermalis DSM 11300. Extremophiles 18, 1009–1021 (2014). https://doi.org/10.1007/s00792-014-0671-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-014-0671-8

Keywords

Navigation