Skip to main content
Log in

Molecular biology of fuselloviruses and their satellites

  • Review
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Fuselloviruses, also known as Sulfolobus Spindle-shaped viruses (SSVs), are “lemon”- or “spindle”-shaped double-stranded DNA viruses. Among them, SSV1, SSV2 and the satellite viruses pSSVx and pSSVi have been investigated at the structural, genetic, transcriptomic, proteomic and biochemical levels, thus becoming models for dissecting DNA replication/gene expression in Archaea. Important progress has been made including elucidation of temporal genome expression during virus infection and induction of replication, SSV1 lysogeny maintenance as well as differentially expression of pSSVx replicase. Future researches focusing on these model systems would yield insightful knowledge of life cycle and DNA replication of fuselloviruses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ackermann HW, Prangishvili D (2012) Prokaryote viruses studied by electron microscopy. Arch Virol 157:1843–1849

    PubMed  CAS  Google Scholar 

  • Albers SV, Jonuscheit M et al (2006) Production of recombinant and tagged proteins in the hyperthermophilic archaeon Sulfolobus solfataricus. Appl Environ Microbiol 72:102–111

    PubMed Central  PubMed  CAS  Google Scholar 

  • Albers SV, Forterre P, Prangishvili D, Schleper C (2013) The legacy of Carl Woese and Wolfram Zillig: from phylogeny to landmark discoveries. Nat Rev Microbiol 11:713–719

    PubMed  CAS  Google Scholar 

  • Alekshun MN, Levy SB, Mealy TR, Seaton BA, Head JF (2001) The crystal structure of MarR, a regulator of multiple antibiotic resistance, at 2.3 A resolution. Nat Struct Biol 8:710–714

    PubMed  CAS  Google Scholar 

  • Argos P, Landy A et al (1986) The integrase family of site-specific recombinases: regional similarities and global diversity. EMBO J 5:433–440

    PubMed Central  PubMed  CAS  Google Scholar 

  • Arnold HP, She Q et al (1999) The genetic element pSSVx of the extremely thermophilic crenarchaeon Sulfolobus is a hybrid between a plasmid and a virus. Mol Microbiol 34:217–226

    PubMed  CAS  Google Scholar 

  • Atanasova NS, Roine E, Oren A, Bamford DH, Oksanen HM (2012) Global network of specific virus-host interactions in hypersaline environments. Environ Microbiol 14:426–440

    PubMed  CAS  Google Scholar 

  • Atomi H, Imanaka T, Fukui T (2012) Overview of the genetic tools in the Archaea. Front Microbiol 3:337

    PubMed Central  PubMed  Google Scholar 

  • Aucelli T, Contursi P, Girfoglio M, Rossi M, Cannio R (2006) A spreadable, non-integrative and high copy number shuttle vector for Sulfolobus solfataricus based on the genetic element pSSVx from Sulfolobus islandicus. Nucleic Acids Res 34:e114

    PubMed Central  PubMed  Google Scholar 

  • Bamford DH (2003) Do viruses form lineages across different domains of life? Res Microbiol 154:231–236

    PubMed  CAS  Google Scholar 

  • Bamford DH, Grimes JM, Stuart DI (2005) What does structure tell us about virus evolution? Curr Opin Struct Biol 15:655–663

    PubMed  CAS  Google Scholar 

  • Bartolucci S, Contursi P, Fiorentino G, Limauro D, Pedone E (2013) Responding to toxic compounds: a genomic and functional overview of Archaea. Front Biosci 18:165–189

    CAS  Google Scholar 

  • Bize A, Peng X et al (2008) Viruses in acidic geothermal environments of the Kamchatka Peninsula. Res Microbiol 159:358–366

    PubMed  CAS  Google Scholar 

  • Bolduc B, Shaughnessy DP, Wolf YI, Koonin EV, Roberto FF, Young M (2012) Identification of novel positive-strand RNA viruses by metagenomic analysis of archaea-dominated Yellowstone hot springs. J Virol 86:5562–5573

    PubMed Central  PubMed  CAS  Google Scholar 

  • Brantl S (2002a) Antisense RNAs in plasmids: control of replication and maintenance. Plasmid 48:165–173

    PubMed  CAS  Google Scholar 

  • Brantl S (2002b) Antisense-RNA regulation and RNA interference. Biochim Biophys Acta 1575:15–25

    PubMed  CAS  Google Scholar 

  • Campbell AM (1992) Chromosomal insertion sites for phages and plasmids. J Bacteriol 174:7495

    PubMed Central  PubMed  CAS  Google Scholar 

  • Cannio R, Contursi P, Rossi M, Bartolucci S (1998) An autonomously replicating transforming vector for Sulfolobus solfataricus. J Bacteriol 180:3237–3240

    PubMed Central  PubMed  CAS  Google Scholar 

  • Cannio R, Contursi P, Rossi M, Bartolucci S (2001) Thermoadaptation of a mesophilichygromycin B phosphotransferase by directed evolution in hyperthermophilic Archaea: selection of a stable genetic marker for DNA transfer into Sulfolobus solfataricus. Extremophiles 5:153–159

    PubMed  CAS  Google Scholar 

  • Ceballos RM, Marceau CD, Marceau JO, Morris S, Clore AJ, Stedman KM (2012) Differential virus host-ranges of the Fuselloviridae of hyperthermophilic Archaea: implications for evolution in extreme environments. Front Microbiol 3:295

    PubMed Central  PubMed  Google Scholar 

  • Clore AJ, Stedman KM (2007) The SSV1 viral integrase is not essential. Virology 361:103–111

    PubMed  CAS  Google Scholar 

  • Contursi P, Cannio R, Prato S, Fiorentino G, Rossi M, Bartolucci S (2003) Development of a genetic system for hyperthermophilic Archaea: expression of a moderate thermophilic bacterial alcohol dehydrogenase gene in Sulfolobus solfataricus. FEMS Microbiol Lett 218:115–120

    PubMed  CAS  Google Scholar 

  • Contursi P, Pisani FM, Grigoriev A, Cannio R, Bartolucci S, Rossi M (2004) Identification and autonomous replication capability of a chromosomal replication origin from the archaeon Sulfolobus solfataricus. Extremophiles 8:385–391

    PubMed  CAS  Google Scholar 

  • Contursi P, Jensen S, Aucelli T, Rossi M, Bartolucci S, She Q (2006) Characterization of the Sulfolobus host-SSV2 virus interaction. Extremophiles 10:615–627

    PubMed  CAS  Google Scholar 

  • Contursi P, Cannio R, Prato S, She Q, Rossi M, Bartolucci S (2007) Transcriptional analysis of the genetic element pSSVx: differential and temporal regulation of gene expression reveals correlation between transcription and replication. J Bacteriol 189:6339–6350

    PubMed Central  PubMed  CAS  Google Scholar 

  • Contursi P, Cannio R, She Q (2010) Transcription termination in the plasmid/virus hybrid pSSVx from Sulfolobus islandicus. Extremophiles 14:453–463

    PubMed  CAS  Google Scholar 

  • Contursi P, D’Ambrosio K et al (2011) C68 from the Sulfolobus islandicus plasmid-virus pSSVx is a novel member of the AbrB-like transcription factor family. Biochem J 435:157–166

    PubMed  CAS  Google Scholar 

  • Contursi P, Fusco S, Limauro D, Fiorentino G (2013) Host and viral transcriptional regulators in Sulfolobus: an overview. Extremophiles 17:881–895

    PubMed  CAS  Google Scholar 

  • Cortez D, Forterre P, Gribaldo S (2009) A hidden reservoir of integrative elements is the major source of recently acquired foreign genes and ORFans in archaeal and bacterial genomes. Genome Biol 10:R65

    PubMed Central  PubMed  Google Scholar 

  • del Solar G, Espinosa M (2000) Plasmid copy number control: an ever-growing story. Mol Microbiol 37:492–500

    PubMed  Google Scholar 

  • Di Fiore A, Fiorentino G, Vitale RM, Ronca R, Amodeo P, Pedone C, Bartolucci S, De Simone G (2009) Structural analysis of BldR from Sulfolobus solfataricus provides insights into the molecular basis of transcriptional activation in archaea by MarR family proteins. J Mol Biol 388:559–569

    PubMed  Google Scholar 

  • Dodd IB, Shearwin KE, Egan JB (2005) Revisited gene regulation in bacteriophage lambda. Curr Opin Genet Dev 15:145–152

    PubMed  CAS  Google Scholar 

  • Eilers BJ, Young MJ, Lawrence CM (2012) The structure of an archaeal viral integrase reveals an evolutionarily conserved catalytic core yet supports a mechanism of DNA cleavage in trans. J Virol 86:8309–8313

    PubMed Central  PubMed  CAS  Google Scholar 

  • Fiorentino G, Ronca R, Bartolucci S (2009) A novel E. coli biosensor for detecting aromatic aldehydes based on a responsive inducible archaeal promoter fused to the green fluorescent protein. Appl Microbiol Biotechnol 82:67–77

    PubMed  CAS  Google Scholar 

  • Fiorentino G, Del Giudice I, Bartolucci S, Durante L, Martino L, Del Vecchio P (2011) Identification and physicochemical characterization of BldR2 from Sulfolobus solfataricus, a novel archaeal member of the MarR transcription factor family. Biochemistry 50:6607–6621

    PubMed  CAS  Google Scholar 

  • Forterre P (2006) The origin of viruses and their possible roles in major evolutionary transitions. Virus Res 117:5–16

    PubMed  CAS  Google Scholar 

  • Forterre P, Prangishvili D (2013) The major role of viruses in cellular evolution: facts and hypotheses. Curr Opin Virol 3:558–565

    PubMed  CAS  Google Scholar 

  • Fröls S, Gordon PM, Panlilioc MA, Schleper C, Sensen CW (2007) Elucidating the transcription cycle of the UV-inducible hyperthermophilic archaeal virus SSV1 by DNA microarrays. Virology 365:48–59

    PubMed  Google Scholar 

  • Fu CY, Johnson JE (2012) Structure and cell biology of archaeal virus STIV. Curr Opin Virol 2:122–127

    PubMed Central  PubMed  CAS  Google Scholar 

  • Fusco S, She Q, Bartolucci S, Contursi P (2013) T(lys), a newly identified Sulfolobus spindle-shaped virus 1 transcript expressed in the lysogenic state, encodes a DNA-binding protein interacting at the promoters of the early genes. J Virol 87:5926–5936

    PubMed Central  PubMed  CAS  Google Scholar 

  • Garrett RA, Shah SA, Vestergaard G, Deng L, Gudbergsdottir S, Kenchappa CS, Erdmann S, She Q (2011) CRISPR-based immune systems of the Sulfolobales: complexity and diversity. Biochem Soc Trans 39:51–57

    PubMed  CAS  Google Scholar 

  • Gibrat JF, Madej T, Bryant SH (1996) Surprising similarities in structure comparison. Curr Opin Struct Biol 6:377–385

    PubMed  CAS  Google Scholar 

  • Girfoglio M, Rossi M, Cannio R (2012) Cellulose degradation by Sulfolobus solfataricus requires a cell-anchored endo-beta-1-4-glucanase. J Bacteriol 194:5091–5100

    PubMed Central  PubMed  CAS  Google Scholar 

  • Grummt I, Maier U, Ohrlein A, Hassouna N, Bachellerie JP (1985) Transcription of mouse rDNA terminates downstream of the 3′ end of 28 s rRNA and involves interaction of factors with repeated sequences in the 3′ spacer. Cell 43:801–810

    PubMed  CAS  Google Scholar 

  • Guixa-Boixareu N, Calderon-Paz JI, Heldal M, Bratbak G, Pedros-Alio C (1996) Viral lysis and bacterivory as prokaryotic loss factors along a salinity gradient. Aquat Microb Ecol 11:215–227

    Google Scholar 

  • Guo X, Huang L (2010) A superfamily 3 DNA helicase encoded by plasmid pSSVi from the hyperthermophilic archaeon Sulfolobus solfataricus unwinds DNA as a higher-order oligomer and interacts with host primase. J Bacteriol 192:1853–1864

    PubMed Central  PubMed  CAS  Google Scholar 

  • Guo L, Brugger K, Liu C et al (2011) Genome analyses of Icelandic strains of Sulfolobus islandicus, model organisms for genetic and virus-host interaction studies. J Bacteriol 193:1672–1680

    PubMed Central  PubMed  CAS  Google Scholar 

  • Häring M, Rachel R, Peng X, Garrett RA, Prangishvili D (2005) Viral diversity in hot springs of Pozzuoli, Italy, and characterization of a unique archaeal virus, Acidianus bottle-shaped virus, from a new family, the Ampullaviridae. J Virol 79:9904–9911

    PubMed Central  PubMed  Google Scholar 

  • Held NL, Whitaker RJ (2009) Viral biogeography revealed by signatures in Sulfolobus islandicus genomes. Environ Microbiol 11:457–466

    PubMed  CAS  Google Scholar 

  • Helmer-Citterich M, Anceschi MM, Banner DW, Cesareni G (1988) Control of ColE1 replication: low affinity specific binding of Rop (Rom) to RNAI and RNAII. EMBO J 7:557–566

    PubMed Central  PubMed  CAS  Google Scholar 

  • Huet J, Schnabel R, Sentenac A, Zillig W (1983) Archaebacteria and eukaryotes possess DNA dependent. RNA polymerases of a common type. EMBO J 2:1291–1294

    PubMed Central  PubMed  CAS  Google Scholar 

  • Iverson E, Stedman K (2012) A genetic study of SSV1, the prototypical fusellovirus. Front Microbiol 3:1–7

    Google Scholar 

  • Jaubert C, Danioux C, Oberto J, Cortez D, Bize A, Krupovic M, She Q, Forterre P, Prangishvili D, G Sezonov (2013) Genomics and genetics of Sulfolobus islandicus LAL14/1, a model hyperthermophilic archaeon. Open Biol 3(4):130010. doi:10.1098/rsob.130010

    PubMed Central  PubMed  Google Scholar 

  • Jonuscheit M, Martusewitsch E, Stedman KM, Schleper C (2003) A reporter gene system for the hyperthermophilic archaeon Sulfolobus solfataricus based on a selectable and integrative shuttle vector. Mol Microbiol 48:1241–1252

    PubMed  CAS  Google Scholar 

  • Keeling PJ, Klenk HP et al (1996) Complete nucleotide sequence of the Sulfolobus islandicus multicopy plasmid pRN1. Plasmid 35:141–144

    PubMed  CAS  Google Scholar 

  • Keeling PJ, Klenk HP et al (1998) Sulfolobus islandicus plasmids pRN1 and pRN2 share distant but common evolutionary ancestry. Extremophiles 2:391–393

    PubMed  CAS  Google Scholar 

  • Kletzin A, Lieke A, Urich T, Charlebois RL, Sensen CW (1999) Molecular analysis of pDL10 from Acidianus ambivalens reveals a family of related plasmids from extremely thermophilic and acidophilic archaea. Genetics 152:1307–1314

    PubMed Central  PubMed  CAS  Google Scholar 

  • Koonin EV (1992) Archaebacterial virus SSV1 encodes a putative DnaA-like protein. Nucleic Acids Res 11:1143

    Google Scholar 

  • Koonin EV, Senkevich TG, Dolja VV (2006) The ancient Virus World and evolution of cells. Biol Direct 19:1–29

    Google Scholar 

  • Kraft P, Kümmel D, Oeckinghaus A, Gauss GH, Wiedenheft B, Young M, Lawrence CM (2004a) Structure of D-63 from Sufolobus spindle-shaped virus 1: surface properties of the dimeric four-helix bundle suggest an adaptor protein function. J Virol 78:7438–7442

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kraft P, Oeckinghaus A et al (2004b) Crystal structure of F-93 from Sulfolobus spindle-shaped virus 1, a winged-helix DNA binding protein. J Virol 78:11544–11550

    PubMed Central  PubMed  CAS  Google Scholar 

  • Krupovic M, Prangishvili D, Hendrix RW, Bamford DH (2011) Genomics of bacterial and archaeal viruses: dynamics within the prokaryotic virosphere. Microbiol Mol Biol Rev 75:610–613

    PubMed Central  PubMed  Google Scholar 

  • Krupovic M, White MF, Forterre P, Prangishvili D (2012) Postcards from the edge: structural genomics of archaeal viruses. Adv Virus Res 82:33–62

    PubMed  CAS  Google Scholar 

  • Kwong SM, Skurray RA, Firth N (2006) Replication control of staphylococcal multiresistance plasmid pSK41: an antisense RNA mediates dual-level regulation of Rep expression. J Bacteriol 188:4404–4412

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lawrence CM, Menon S, Eilers BJ, Bothner B, Khayat R, Douglas T, Young MJ (2009) Structural and functional studies of archaeal viruses. J Biol Chem 284:12599–12603

    PubMed Central  PubMed  CAS  Google Scholar 

  • Le Romancer M, Gaillard M, Geslin C, Prieur D (2007) Viruses in extreme environments. Extremophiles 6:17–31

    Google Scholar 

  • Limauro D, Cannio R, Fiorentino G, Rossi M, Bartolucci S (2001) Identification and molecular characterization of an endoglucanase gene, celS, from the extremely thermophilic archaeon Sulfolobus solfataricus. Extremophiles 5:213–219

    PubMed  CAS  Google Scholar 

  • Lipps G (2006) Plasmids and viruses of the thermoacidophilic crenarchaeote Sulfolobus. Extremophiles 10:17–28

    PubMed  Google Scholar 

  • Lipps G, Rother S, Hart C, Krauss G (2003) A novel type of replicative enzyme harbouring ATPase, primase and DNA polymerase activity. EMBO J 22:2516–2525

    PubMed Central  PubMed  CAS  Google Scholar 

  • Martin A, Yeats S, Janekovic D, Reiter WD, Aicher W, Zillig W (1984) SAV 1, a temperate UV.-inducible DNA virus-like particle from the archaebacterium Sulfolobus acidocaldarius isolate B12. EMBO J 3:2165–2168

    PubMed Central  PubMed  CAS  Google Scholar 

  • Menon SK, Maaty WS et al (2008) Cysteine usage in Sulfolobus spindle-shaped virus 1 and extension to hyperthermophilic viruses in general. Virology 376:270–278

    PubMed  CAS  Google Scholar 

  • Menon SK, Eilers BJ, Young MJ, Lawrence CM (2010) The crystal structure of D212 from Sulfolobus spindle-shaped virus ragged hills reveals a new member of the PD-(D/E)XK nuclease superfamily. J Virol 84:5890–5897

    PubMed Central  PubMed  CAS  Google Scholar 

  • Mochizuki T, Yoshida T, Tanaka R, Forterre P, Sako Y, Prangishvili D (2010) Diversity of viruses of the hyperthermophilic archaeal genus Aeropyrum, and isolation of the Aeropyrum pernix bacilliform virus 1, APBV1, the first representative of the family Clavaviridae. Virology 402:347–354

    PubMed  CAS  Google Scholar 

  • Mochizuki T, Krupovic M, Pehau-Arnaudet G, Sako Y, Forterre P, Prangishvili D (2012) Archaeal virus with exceptional virion architecture and the largest single-stranded DNA genome. Proc Natl Acad Sci USA 109:13386–13391

    PubMed Central  PubMed  CAS  Google Scholar 

  • Mosig G, Hall DH (1994) Regulation of gene expression. In: Karam JD (ed) Molecular biology of bacteriophage T4. ASM Press, Washington, DC, pp 127–193

    Google Scholar 

  • Muskhelishvili G, Palm P, Zillig W (1993) SSV1-encoded site-specific recombination system in Sulfolobus shibatae. Mol Gen Genet 237:334–342

    PubMed  CAS  Google Scholar 

  • Nadal M, Mirambeau G, Forterre P, Reiter W-D, Duguet M (1986) Positively supercoiled DNA in a virus-like particle of an archaebacterium. Nature 321:256–258

    CAS  Google Scholar 

  • Okutan E, Deng L, Mirlashari S, Uldahl K, Halim M, Liu C, Garrett RA, She Q, Peng X (2013) Novel insights into gene regulation of the rudivirus SIRV2 infecting Sulfolobus cells. RNA Biol 10:875–885

    PubMed  CAS  Google Scholar 

  • Oren A, Bratbak G, Hendal M (1997) Occurrence of virus-like particles in the Dead Sea. Extremophiles 1:143–149

    PubMed  CAS  Google Scholar 

  • Ortmann AC, Wiedenheft B, Douglas T, Young M (2006) Hot crenarchaeal viruses reveal deep evolutionary connections. Nat Rev Microbiol 4:520–528

    PubMed  CAS  Google Scholar 

  • Ortmann AC, Brumfield SK et al (2008) Transcriptome analysis of infection of the archaeon Sulfolobus solfataricus with Sulfolobus turreted icosahedral virus. J Virol 82:4874–4883

    PubMed Central  PubMed  CAS  Google Scholar 

  • Palm P, Schleper C, Grampp B, Yeats S, McWilliam P, Reiter WD, Zillig W (1991) Complete nucleotide sequence of the virus SSV1 of the archaebacterium Sulfolobus shibatae. Virology 185:242–250

    PubMed  CAS  Google Scholar 

  • Peng X (2008) Evidence for the horizontal transfer of an integrase gene from a fusellovirus to a pRN-like plasmid within a single strain of Sulfolobus and the implications for plasmid survival. Microbiology 154:383–391

    PubMed  CAS  Google Scholar 

  • Peng X, Holz I, Zillig W, Garrett RA, She Q (2000) Evolution of the family of pRN plasmids and their integrase-mediated insertion into the chromosome of the crenarchaeon Sulfolobus solfataricus. J Mol Biol 303:449–454

    PubMed  CAS  Google Scholar 

  • Peng X, Garrett RA, She Q (2012) Archaeal viruses–novel, diverse and enigmatic. Sci China Life Sci 55:422–433

    PubMed  CAS  Google Scholar 

  • Pietilä MK, Roine E, Paulin L, Kalkkinen N, Bamford DH (2009) An ssDNA virus infecting archaea: a new lineage of viruses with a membrane envelope. Mol Microbiol 72:307–319

    PubMed  Google Scholar 

  • Pietilä MK, Laurinmäki P, Russell DA, Ko CC, Jacobs-Sera D, Butcher SJ, Bamford DH, Hendrix RW (2013) Insights into head-tailed viruses infecting extremely halophilic archaea. J Virol 87:3248–3260

    PubMed Central  PubMed  Google Scholar 

  • Pina M, Bize A, Forterre P, Prangishvili D (2011) The archeoviruses. FEMS Microbiol Rev 35:1035–1054

    PubMed  CAS  Google Scholar 

  • Porter K, Russ BE, Dyall-Smith ML (2007) Virus–host interactions in salt lakes. Curr Opin Microbiol 10:418–424

    PubMed  CAS  Google Scholar 

  • Porter K, Tang SL, Chen CP, Chiang PW, Hong MJ, Dyall-Smith M (2013) PH1: an archaeovirus of Haloarcula hispanica related to SH1 and HHIV-2. Archaea 2013:456318

    PubMed Central  PubMed  Google Scholar 

  • Prangishvili D (2003) Evolutionary insights from studies on viruses of hyperthermophilic archaea. Res Microbiol 154:289–294

    PubMed  CAS  Google Scholar 

  • Prangishvili D (2013) The wonderful world of archaeal viruses. Annu Rev Microbiol 8:565–585

    Google Scholar 

  • Prangishvili D, Garrett RA (2004) Exceptionally diverse morphotypes and genomes of crenarchaeal hyperthermophilic viruses. Biochem Soc Trans 32:204–208

    PubMed  CAS  Google Scholar 

  • Prangishvili D, Garrett RA (2005) Viruses of hyperthermophilic Crenarchaea. Trends Microbiol 13:535–542

    PubMed  CAS  Google Scholar 

  • Prangishvili D, Stedman K, Zillig W (2001) Viruses of the extremely thermophilic archaeon Sulfolobus. Trends Microbiol 9:39–43

    PubMed  CAS  Google Scholar 

  • Prangishvili D, Forterre P, Garrett RA (2006a) Viruses of the Archaea: a unifying view. Nat Rev Microbiol 4:837–848

    PubMed  CAS  Google Scholar 

  • Prangishvili D, Garrett RA, Koonin EV (2006b) Evolutionary genomics of archaeal viruses: unique viral genomes in the third domain of life. Virus Res 117:52–67

    PubMed  CAS  Google Scholar 

  • Prato S, Cannio R, Klenk HP, Contursi P, Rossi M, Bartolucci S (2006) pIT3, a cryptic plasmid isolated from the hyperthermophilic crenarchaeon Sulfolobus solfataricus IT3. Plasmid 56:35–45

    PubMed  CAS  Google Scholar 

  • Quax TE, Voet M, Sismeiro O, Dillies MA, Jagla B, Coppée JY, Sezonov G, Forterre P, van der Oost J, Lavigne R, Prangishvili D (2013) Massive activation of archaeal defense genes during viral infection. J Virol 87:8419–8428

    PubMed Central  PubMed  CAS  Google Scholar 

  • Quemin ER, Lucas S, Daum B, Quax TE, Kühlbrandt W, Forterre P, Albers SV, Prangishvili D, Krupovic M (2013) First insights into the entry process of hyperthermophilic archaeal viruses. J Virol 87:13379–13385

    PubMed  CAS  Google Scholar 

  • Rachel R, Bettstetter M, Hedlund BP, Häring M, Kessler A, Stetter KO, Prangishvili D (2002) Remarkable morphological diversity of viruses and virus-like particles in hot terrestrial environments. Arch Virol 147:2419–2429

    PubMed  CAS  Google Scholar 

  • Redder P, Peng X, Brügger K, Shah SA, Roesch F, Greve B, She Q, Schleper C, Forterre P, Garrett RA, Prangishvili D (2009) Four newly isolated fuselloviruses from extreme geothermal environments reveal unusual morphologies and a possible interviral recombination mechanism. Environ Microbiol 11:2849–2862 John Wiley & Sons Ltd

    PubMed  CAS  Google Scholar 

  • Reiter WD, Palm P et al (1987a) Identification and characterization of the genes encoding three structural proteins of the Sulfolobus virus-like particle SSV1. Mol Gen Genet 206:144–153

    CAS  Google Scholar 

  • Reiter WD, Palm P, Yeats S, Zillig W (1987b) Gene expression in archaebacteria: physical mapping of constitutive and UV-inducible transcripts from the Sulfolobus virus-like particle SSV1. Mol Gen Genet 209:270–275

    PubMed  CAS  Google Scholar 

  • Reiter WD, Palm P, Zillig W (1988a) Analysis of transcription in the archaebacterium Sulfolobus indicates that archaebacterial promoters are homologous to eukaryotic pol II promoters. Nucleic Acids Res 16:1–19

    PubMed Central  PubMed  CAS  Google Scholar 

  • Reiter WD, Palm P, Zillig W (1988b) Transcription termination in the archaebacterium Sulfolobus: signal structures and linkage to transcription initiation. Nucleic Acids Res 16:2445–2459

    PubMed Central  PubMed  CAS  Google Scholar 

  • Reiter WD, Palm P, Yeats S (1989) Transfer RNA genes frequently serve as integration sites for prokaryotic genetic elements. Nucleic Acids Res 17:1907–1914

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ren Y, She Q, Huang L (2013) Transcriptomic analysis of the SSV2 infection of Sulfolobus solfataricus with and without the integrative plasmid pSSVi. Virology 441:126–134

    PubMed  CAS  Google Scholar 

  • Rice G, Stedman K et al (2001) Viruses from extreme thermal environments. Proc Natl Acad Sci USA 98:13341–13345

    PubMed Central  PubMed  CAS  Google Scholar 

  • Schlenker C, Goel A, Tripet BP, Menon S, Willi T, Dlakić M, Young MJ, Lawrence CM, Copié V (2012) Structural studies of E73 from a hyperthermophilic archaeal virus identify the “RH3” domain, an elaborated ribbon-helix-helix motif involved in DNA recognition. Biochemistry 51:2899–2910

    PubMed Central  PubMed  CAS  Google Scholar 

  • Schleper C, Kubo K, Zillig W (1992) The particle SSV1 from the extremely thermophilic archaeon Sulfolobus is a virus: demonstration of infectivity and of transfection with viral DNA. Proc Natl Acad Sci USA 89:7645–7649

    PubMed Central  PubMed  CAS  Google Scholar 

  • Serre MC, Letzelter C, Garel JR, Duguet M (2002) Cleavage properties of an archaeal site-specific recombinase, the SSV1 integrase. J Biol Chem 277:16758–16767

    PubMed  CAS  Google Scholar 

  • She Q, Peng X, Zillig W, Garrett RA (2001a) Gene capture in archaeal chromosomes. Nature 409:478

    PubMed  CAS  Google Scholar 

  • She Q, Singh RK et al (2001b) The complete genome of the crenarchaeon Sulfolobus solfataricus P2. Proc Natl Acad Sci USA 98:7835–7840

    PubMed Central  PubMed  CAS  Google Scholar 

  • She Q, Brügger K, Chen L (2002) Archaeal integrative genetic elements and their impact on genome evolution. Res Microbiol 153:325–332

    PubMed  CAS  Google Scholar 

  • She Q, Shen B, Chen L (2004) Archaeal integrases and mechanisms of gene capture. Biochem Soc Trans 32:222–226

    PubMed  CAS  Google Scholar 

  • She Q, Zhang C, Deng L, Peng N, Chen Z, Liang YX (2009) Genetic analyses in the hyperthermophilic archaeon Sulfolobus islandicus. Biochem Soc Trans 37:92–96

    PubMed  CAS  Google Scholar 

  • Siemering KR, Praszkier J, Pittard AJ (1994) Mechanism of binding of the antisense and target RNAs involved in the regulation of IncB plasmid replication. J Bacteriol 176:2677–2688

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sime-Ngando T, Lucas S, Robin A, Tucker KP, Colombet J, Bettarel Y, Desmond E, Gribaldo S, Forterre P, Breitbart M, Prangishvili D (2011) Diversity of virus-host systems in hypersaline Lake Retba, Senegal. Environ Microbiol 13:1956–1972

    PubMed  Google Scholar 

  • Snyder JC, Young MJ (2011) Advances in understanding archaea-virus interactions in controlled and natural environments. Curr Opin Microbiol 14:497–503

    PubMed  Google Scholar 

  • Snyder JC, Stedman K, Rice G, Wiedenheft B, Spuhler J, Young MJ (2003) Viruses of hyperthermophilic Archaea. Res Microbiol 154:474–482

    PubMed  CAS  Google Scholar 

  • Stedman KM, Schleper C, Rumpf E, Zillig W (1999) Genetic requirements for the function of the archaeal virus SSV1 in Sulfolobus solfataricus: construction and testing of viral shuttle vectors. Genetics 152:1397–1405

    PubMed Central  PubMed  CAS  Google Scholar 

  • Stedman KM, She Q et al (2003) Relationships between fuselloviruses infecting the extremely thermophilic archaeon Sulfolobus: sSV1 and SSV2. Res Microbiol 154:295–302

    PubMed  CAS  Google Scholar 

  • Stedman KM, Kosmicki NR, Diemer GS (2013) Codon usage frequency of RNA virus genomes from high-temperature acidic-environment metagenomes. J Virol 87:1919

    PubMed Central  PubMed  CAS  Google Scholar 

  • Straub J, Brenneis M, Jellen-Ritter A, Heyer R, Soppa J, Marchfelder A (2009) Small RNAs in haloarchaea: identification, differential expression and biological function. RNA Biol 6:281–292

    PubMed  CAS  Google Scholar 

  • Tang TH, Bachellerie JP, Rozhdestvensky T, Bortolin ML, Huber H, Drungowski M, Elge T, Brosius J, Huttenhofer A (2002) Identification of 86 candidates for small non-messenger RNAs from the archaeon Archaeoglobus fulgidus. Proc Natl Acad Sci USA 99:7536–7541

    PubMed Central  PubMed  CAS  Google Scholar 

  • Tang TH, Polacek N, Zywicki M et al (2005) Identification of novel non-coding RNAs as potential antisense regulators in the archaeon Sulfolobus solfataricus. Mol Microbiol 55:469–481

    PubMed  CAS  Google Scholar 

  • Wagner M, Berkner S, Ajon M, Driessen AJM, Albers SV (2009) Expanding and understanding the genetic toolbox of the hyperthermophilic genus Sulfolobus. Biochem Soc Trans 37:97–101

    PubMed  CAS  Google Scholar 

  • Wang Y, Duan Z, Zhu H, Guo X, Wang Z, Zhou J, She Q, Huang L (2007) A novel Sulfolobus non-conjugative extrachromosomal genetic element capable of integration into the host genome and spreading in the presence of a fusellovirus. Virology 363:124–133 Elsevier Publishers

    PubMed  CAS  Google Scholar 

  • Wiedenheft B, Stedman K et al (2004) Comparative genomic analysis of hyperthermophilic archaeal Fuselloviridae viruses. J Virol 78:1954–1961

    PubMed Central  PubMed  CAS  Google Scholar 

  • Woese CR, Magrum LJ, Fox GE (1978) Archaebacteria. J Mol Evol 11:245–251

    PubMed  CAS  Google Scholar 

  • Wu RY, Zhang RG et al (2003) Crystal structure of Enterococcus faecalis SlyA-like transcriptional factor. J Biol Chem 278:20240–20244

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wurtzel O, Sapra R, Chen F, Zhu Y, Simmons BA, Sorek R (2009) A single-base resolution map of an archaeal transcriptome. Genome Res 20:133–141

    PubMed  Google Scholar 

  • Yeats S, McWilliam P, Zillig W (1982) A plasmid in the archaebacterium Sulfolobus acidocaldarius. EMBO J 1:1035–1038

    PubMed Central  PubMed  CAS  Google Scholar 

  • Zhan Z, Ouyang S, Liang W, Zhang Z, Liu ZJ, Huang L (2012) Structural and functional characterization of the C-terminal catalytic domain of SSV1 integrase. Acta Crystallogr D Biol Crystallogr 68:659–670

    PubMed  CAS  Google Scholar 

  • Zhang C, Cooper TE, Krause DJ, Whitaker RJ (2013) Augmenting the genetic toolbox for Sulfolobus islandicus with a stringent positive selectable marker for agmatine prototrophy. Appl Environ Microbiol 79:5539–5549

    PubMed Central  PubMed  CAS  Google Scholar 

  • Zheng T, Huang Q, Zhang C, Ni J, She Q, Shen Y (2012) Development of a simvastatin selection marker for a hyperthermophilicacidophile, Sulfolobus islandicus. Appl Environ Microbiol 78:568–574

    PubMed Central  PubMed  CAS  Google Scholar 

  • Zillig W, Palm P, Reiter WD, Gropp F, Puhler G, Klenk HP (1988) Comparative evaluation of gene expression in archaebacteria. Eur J Biochem 173:473–482

    PubMed  CAS  Google Scholar 

  • Zillig W, Kletzin A et al (1994) Screening for Sulfolobales, Their Plasmids and Their Viruses in Icelandic Solfataras. Syst Appl Microbiol 16:609–628

    CAS  Google Scholar 

  • Zillig W, Prangishvilli D et al (1996) Viruses, plasmids and other genetic elements of thermophilic and hyperthermophilic Archaea. FEMS Microbiol Rev 18:225–236

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Researches in the authors’ laboratories are supported by the grant “Programma F.A.R.O, IV° tornata”, founded by Università Federico II di Napoli and “Compagnia di San Paolo” (Naples Laboratory) and grants (DFF–1323-00330 and FTP/11-106683) from Danish Council of Independent Research (Copenhagen laboratory). We thank Peter Redder and Li Huang for providing pictures of fuselloviruses and Prof. Simonetta Bartolucci for valuable scientific discussions throughout the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Patrizia Contursi or Qunxin She.

Additional information

Communicated by S. Albers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Contursi, P., Fusco, S., Cannio, R. et al. Molecular biology of fuselloviruses and their satellites. Extremophiles 18, 473–489 (2014). https://doi.org/10.1007/s00792-014-0634-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-014-0634-0

Keywords

Navigation