Skip to main content
Log in

Stress fermentation strategies for the production of hyperthermostable superoxide dismutase from Thermus thermophilus HB27: effects of ions

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

In this study, we explored how ammonium and metal ion stresses affected the production of recombinant hyperthermostable manganese superoxide dismutase (Mn-SOD). To improve Mn-SOD production, fed-batch culture in shake flasks and bioreactor fermentation were undertaken to examine the effects of \( {\text{NH}}_{ 4}^{{^{ + } }} \) and Mn2+ feeding. Under the optimized feeding time and concentrations of \( {\text{NH}}_{ 4}^{{^{ + } }} \) and Mn2+, the maximal SOD activity obtained from bioreactor fermentation reached some 480 U/ml, over 4 times higher than that in batch cultivation (113 U/ml), indicating a major enhancement of the concentration of Mn-SOD in the scale-up of hyperthermostable Mn-SOD production. In contrast, when the fed-batch culture with appropriate \( {\text{NH}}_{ 4}^{{^{ + } }} \) and Mn2+ feeding was carried out in the same 5-L stirred tank bioreactor, a maximal SOD concentration of some 450 U/ml was obtained, again indicating substantial increase in SOD activity as a result of \( {\text{NH}}_{ 4}^{{^{ + } }} \) and Mn2+ feeding. The isoelectric point (pI) of the sample was found to be 6.2. It was highly stable at 90 °C and circular dichroism measurements indicated a high α-helical content of 70 % as well, consistent with known SOD properties. This study indicates that \( {\text{NH}}_{ 4}^{{^{ + } }} \) and Mn2+ play important roles in Mn-SOD expression. Stress fermentation strategies established in this study are useful for large-scale efficient production of hyperthermostable Mn-SOD and may also be valuable for the scale-up of other extremozymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Behera RK, Mazumdar S (2010) Thermodynamic basis of the thermostability of CYP175A1 from Thermus thermophilus. Int J Biol Macromol 46:412–418

    Article  PubMed  CAS  Google Scholar 

  • Deive FJ, Carvalho E, Pastrana L, Rua ML, Longo MA, Sanroman MA (2009) Strategies for improving extracellular lipolytic enzyme production by Thermus thermophilus HB27. Bioresour Technol 100:3630–3637

    Article  PubMed  CAS  Google Scholar 

  • Kim HJ, Kim AR, Jeon SJ (2010) Immobilization on chitosan of a thermophilic trehalose synthase from Thermus thermophilus HJ6. J Microbiol Biotechnol 20:513–517

    PubMed  Google Scholar 

  • Kobashi N, Nishiyama M, Tanokura M (1999) Aspartate kinase-independent lysine synthesis in an extremely thermophilic bacterium, Thermus thermophilus: lysine is synthesized via alpha-aminoadipic acid not via diaminopimelic acid. J Bacteriol 181:1713–1718

    PubMed  CAS  Google Scholar 

  • Kolaj-Robin O, O’Kane SR, Nitschke W, Leger C, Baymann F, Soulimane T (2011) Biochemical and biophysical characterization of succinate: quinone reductase from Thermus thermophilus. BBA 1807:68–79

    Article  PubMed  CAS  Google Scholar 

  • Leung PH, Wu JY (2007) Effects of ammonium feeding on the production of bioactive metabolites (cordycepin and exopolysaccharides) in mycelial culture of a Cordyceps sinensis fungus. J Appl Microbiol 103:1942–1949

    Article  PubMed  CAS  Google Scholar 

  • Lim JH, Yu YG, Choi IG, Ryu JR, Ahn BY, Kim SH, Han YS (1997) Cloning and expression of superoxide dismutase from Aquifex pyrophilus, a hyperthermophilic bacterium. FEBS Lett 406:142–146

    Article  PubMed  CAS  Google Scholar 

  • Liu JG, Yin MM, Zhu H, Lu JR, Cui ZF (2011) Purification and characterization of a hyperthermostable Mn-superoxide dismutase from Thermus thermophilus HB27. Extremophiles 15:221–226

    Article  PubMed  CAS  Google Scholar 

  • Maehara T, Hoshino T, Nakamura A (2008) Characterization of three putative Lon proteases of Thermus thermophilus HB27 and use of their defective mutants as hosts for production of heterologous proteins. Extremophiles 12:285–296

    Article  PubMed  CAS  Google Scholar 

  • Mao XB, Zhong JJ (2004) Hyperproduction of cordycepin by two-stage dissolved oxygen control in submerged cultivation of medicinal mushroom Cordyceps militaris in bioreactors. Biotechnol Prog 20:1408–1413

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki K (2005) A hyperthermophilic laccase from Thermus thermophilus HB27. Extremophiles 9:415–425

    Article  PubMed  CAS  Google Scholar 

  • Qu JB, Huang YD, Jing GL, Liu JG, Zhou WQ, Zhu H, Lu JR (2011) A novel matrix derivatized from hydrophilic gigaporous polystyrene-based microspheres for high-speed immobilized-metal affinity chromatography. J Chromatogr B 879:1043–1048

    Article  CAS  Google Scholar 

  • Ratledge C, Hall MJ (1971) Influence of metal ions on the formation of mycobactin and salicylic acid in Mycobacterium smegmatis grown in static culture. J Bacteriol 108:314–319

    PubMed  CAS  Google Scholar 

  • Rocha-Martin J, Vega D, Bolivar JM, Godoy CA, Hidalgo A, Berenguer J, Guisan JM, Lopez-Gallego F (2011) New biotechnological perspectives of a NADH oxidase variant from Thermus thermophilus HB27 as NAD+ -recycling enzyme. BMC Biotechnol 11:101

    Article  PubMed  CAS  Google Scholar 

  • Soulimane T (2010) Thermus thermophilus encodes an archaeal-like fructose-1,6-bisphosphatase: purification of native and recombinant protein for structural studies. Protein Expres Purif 74:175–180

    Article  CAS  Google Scholar 

  • Sun AY, Shen YL, Yin JC, Zhang H, Tang YN, Wei DZ (2006) Improvement of expression level and bioactivity of soluble tumor necrosis factor-related apoptosis-inducing ligand (Apo2L/TRAIL) by a novel zinc ion feeding strategy. Biotechnol Lett 28:1215–1219

    Article  PubMed  CAS  Google Scholar 

  • Tabata K, Kosuge T, Nakahara T, Hoshino T (1993) Physical map of the extremely thermophilic bacterium Thermus thermophilus HB27 chromosome. FEBS Lett 331:81–85

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Wang F, Wei D (2009a) Impact of oxygen supply on rtPA expression in Escherichia coli BL21 (DE3): ammonia effects. Appl Microbiol Biotechnol 82:249–259

    Article  PubMed  CAS  Google Scholar 

  • Wang T, Qiu A, Meng F, Zhou H (2009b) Changing the metal binding specificity of superoxide dismutase from Thermus thermophilus HB27 by a single mutation. Mol Biotechnol 42:146–153

    Article  PubMed  CAS  Google Scholar 

  • Whittaker MM, Whittaker JW (2000) Recombinant superoxide dismutase from a hyperthermophilic archaeon, Pyrobaculum aerophilium. J Biol Inorg Chem 5:402–408

    PubMed  CAS  Google Scholar 

  • Yamano S, Maruyama T (1999) An azide-insensitive superoxide dismutase from a hyperthermophilic archaeon, Sulfolobus solfataricus. J Biochem 125:186–193

    Article  PubMed  CAS  Google Scholar 

  • Yamano S, Sako Y, Nomura N, Maruyama T (1999) A cambialistic SOD in a strictly aerobic hyperthermophilic archaeon, Aeropyrum pernix. J Biochem 126:218–225

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Program for New Century Excellent Talents in University (NCET-13), Doctoral Foundation of Shandong Province (2008BS02018), Fundamental Research Funds for the Central Universities (13CX02062A and 13CX02063A) and UK Engineering and Physical Sciences Research Council (EPSRC EP/F062966/1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianguo Liu or Jian R. Lu.

Additional information

Communicated by L. Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, H., Liu, J., Qu, J. et al. Stress fermentation strategies for the production of hyperthermostable superoxide dismutase from Thermus thermophilus HB27: effects of ions. Extremophiles 17, 995–1002 (2013). https://doi.org/10.1007/s00792-013-0581-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-013-0581-1

Keywords

Navigation