Skip to main content
Log in

Biochemical characterization of two glutamate dehydrogenases with different cofactor specificities from a hyperthermophilic archaeon Pyrobaculum calidifontis

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Two putative glutamate dehydrogenase (GDH) genes (pcal_1031 and pcal_1606) were found in a sulfur-dependent hyperthermophilic archaeon, Pyrobaculum calidifontis. The two genes were then expressed in Escherichia coli, and both of the recombinant gene products showed GDH activity. The two enzymes were then purified to homogeneity and characterized in detail. Although both purified GDHs had a hexameric structure and neither exhibited allosteric regulation, they showed different coenzyme specificities: one was specific for NAD+, the other for NADP+ and different heat activation mechanisms. In addition, there was little difference in the kinetic constants, optimal temperature, thermal stability, optimal pH and pH stability between the two enzymes. The overall sequence identity between the two proteins was very high (81 %), but was not high in the region recognizing the 2′ position of the adenine ribose moiety, which is responsible for coenzyme specificity. This is the first report on the identification of two GDHs with different coenzyme specificities from a single hyperthermophilic archaeon and the definition of their basic in vitro properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

GDH:

l-Glutamate dehydrogenase

References

  • Adams MW (1993) Enzymes and proteins from organisms that grow near and above 100 degrees C. Annu Rev Microbiol 47:627–658

    Article  PubMed  CAS  Google Scholar 

  • Amo T, Paje ML, Inagaki A, Ezaki S, Atomi H, Imanaka T (2002) Pyrobaculum calidifontis sp. nov., a novel hyperthermophilic archaeon that grows in atmospheric air. Archaea 1:113–121

    Article  PubMed  CAS  Google Scholar 

  • Bhuiya MW, Sakuraba H, Ohshima T (2002) Temperature dependence of kinetic parameters for hyperthermophilic glutamate dehydrogenase from Aeropyrum pernix K1. Biosci Biotechnol Biochem 66:873–876

    Article  PubMed  CAS  Google Scholar 

  • Bhuiya MW, Sakuraba H, Ohshima T, Imagawa T, Katunuma N, Tsuge H (2005) The first crystal structure of hyperthermostable NAD-dependent glutamate dehydrogenase from Pyrobaculum islandicum. J Mol Biol 345:325–337

    Article  PubMed  CAS  Google Scholar 

  • Bonete MJ, Camacho ML, Cadenas E (1986) Purification and some properties of NAD+-dependent glutamate dehydrogenase from Halobacterium halobium. Int J Biochem 18:785–789

    Article  CAS  Google Scholar 

  • Bonete MJ, Camacho ML, Cadenas E (1987) A new glutamate dehydrogenase from Halobacterium halobium with different coenzyme specificity. Int J Biochem 19:1149–1155

    Article  CAS  Google Scholar 

  • Bonete MJ, Perez-Pomares F, Ferrer J, Camacho ML (1996) NAD-glutamate dehydrogenase from Halobacterium halobium: inhibition and activation by TCA intermediates and amino acids. Biochim Biophys Acta 1289:14–24

    Article  PubMed  Google Scholar 

  • Bonete MJ, Pérez-Pomares F, Díaz S, Ferrer J, Oren A (2003) Occurrence of two different glutamate dehydrogenase activities in the halophilic bacterium Salinibacter ruber. FEMS Microbiol Lett 226:181–186

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of proteins utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Britton KL, Yip KS, Sedelnikova SE, Stillman TJ, Adams MW, Ma K, Maeder DL, Robb FT, Tolliday N, Vetriani C, Rice DW, Baker PJ (1999) Structure determination of the glutamate dehydrogenase from the hyperthermophile Thermococcus litoralis and its comparison with that from Pyrococcus furiosus. J Mol Biol 293:1121–1132

    Article  PubMed  CAS  Google Scholar 

  • Camardella L, Di Fraia R, Antignani A, Ciardiello MA, di Prisco G, Coleman JK, Buchon L, Guespin J, Russell NJ (2002) The Antarctic Psychrobacter sp. TAD1 has two cold-active glutamate dehydrogenases with different cofactor specificities. Characterisation of the NAD+-dependent enzyme. Comp Biochem Physiol A Mol Integr Physiol 131:559–567

    Article  PubMed  Google Scholar 

  • Consalvi V, Chiaraluce R, Politi L, Gambacorta A, De Rosa M, Scandurra R (1991a) Glutamate dehydrogenase from the thermoacidophilic archaebacterium Sulfolobus solfataricus. Eur J Biochem 196:459–467

    Article  PubMed  CAS  Google Scholar 

  • Consalvi V, Chiaraluce R, Politi L, Vaccaro R, De Rosa M, Scandurra R (1991b) Extremely thermostable glutamate dehydrogenase from the hyperthermophilic archaebacterium Pyrococcus furiosus. Eur J Biochem 202:1189–1196

    Article  PubMed  CAS  Google Scholar 

  • Díaz S, Pérez-Pomares F, Pire C, Ferrer J, Bonete MJ (2006) Gene cloning, heterologous overexpression and optimized refolding of the NAD-glutamate dehydrogenase from Haloferax mediterranei. Extremophiles 10:105–115

    Article  PubMed  Google Scholar 

  • Ferguson AR, Sims AP (1971) Inactivation in vivo of glutamine synthetase and NAD-specific glutamate dehydrogenase: its role in the regulation of glutamine synthesis in yeasts. J Gen Microbiol 69:423–427

    Article  PubMed  CAS  Google Scholar 

  • Ferrer J, Pérez-Pomares F, Bonete MJ (1996) NADP-glutamate dehydrogenase from the halophilic archaeon Haloferax mediterranei: enzyme purification, N-terminal sequence and stability. FEMS Microbiol Lett 141:59–63

    Article  PubMed  CAS  Google Scholar 

  • Hammer BA, Johnson EA (1988) Purification, properties, and metabolic roles of NAD+-glutamate dehydrogenase in Clostridium botulinum 113B. Arch Microbiol 150:460–464

    Article  PubMed  CAS  Google Scholar 

  • Hamza MA, Engel PC (2008) Homotropic allosteric control in clostridial glutamate dehydrogenase: different mechanisms for glutamate and NAD+? FEBS Lett 582:1816–1820

    Article  PubMed  CAS  Google Scholar 

  • Hayden BM, Bonete MJ, Brown PE, Moir AJ, Engel PC (2002) Glutamate dehydrogenase of Halobacterium salinarum: evidence that the gene sequence currently assigned to the NADP+-dependent enzyme is in fact that of the NAD+-dependent glutamate dehydrogenase. FEMS Microbiol Lett 211:37–41

    Article  PubMed  CAS  Google Scholar 

  • Helianti I, Morita Y, Murakami Y, Yokoyama K, Tamiya E (2002) Expression of two kinds of recombinant glutamate dehydrogenase from Aeropyrum pernix with different N-terminal sequence length in Escherichia coli. Appl Microbiol Biotechnol 59:462–466

    Article  PubMed  CAS  Google Scholar 

  • Ingoldsby LM, Geoghegan KF, Hayden BM, Engel PC (2005) The discovery of four distinct glutamate dehydrogenase genes in a strain of Halobacterium salinarum. Gene 349:237–244

    Article  PubMed  CAS  Google Scholar 

  • Kawakami R, Sakuraba H, Ohshima T (2007) Gene cloning and characterization of the very large NAD-dependent l-glutamate dehydrogenase from the psychrophile Janthinobacterium lividum, isolated from cold soil. J Bacteriol 189:5626–5633

    Article  PubMed  CAS  Google Scholar 

  • Kimura K, Miyakawa A, Imai T, Sasakawa T (1977) Glutamate dehydrogenase from Bacillus subtilis PCI 219. I. Purification and properties. J Biochem 81:467–476

    PubMed  CAS  Google Scholar 

  • Krämer J (1970) NAD and NADP-dependent glutamate dehydrogenase in Hydrogenomonas H16. Arch Mikrobiol 71:226–234

    Article  PubMed  Google Scholar 

  • Kujo C, Ohshima T (1998) Enzymological characteristics of the hyperthermostable NAD-dependent glutamate dehydrogenase from the archaeon Pyrobaculum islandicum and effects of denaturants and organic solvents. Appl Environ Microbiol 64:2152–2157

    PubMed  CAS  Google Scholar 

  • Lee MK, González JM, Robb F (2002) Extremely thermostable glutamate dehydrogenase (GDH) from the freshwater archaeon Thermococcus waiotapuensis: cloning and comparison with two marine hyperthermophilic GDHs. Extremophiles 6:151–159

    Article  PubMed  CAS  Google Scholar 

  • LéJohn HB, McCrea BE (1968) Evidence for two species of glutamate dehydrogenases in Thiobacillus novellus. J Bacteriol 95:87–94

    PubMed  Google Scholar 

  • Li M, Li C, Allen A, Stanley CA, Smith TJ (2012) The structure and allosteric regulation of mammalian glutamate dehydrogenase. Arch Biochem Biophys 519:69–80

    Article  PubMed  CAS  Google Scholar 

  • Lilley KS, Baker PJ, Britton KL, Stillman TJ, Brown PE, Moir AJ, Engel PC, Rice DW, Bell JE, Bell E (1991) The partial amino acid sequence of the NAD(+)-dependent glutamate dehydrogenase of Clostridium symbiosum: implications for the evolution and structural basis of coenzyme specificity. Biochim Biophys Acta 1080:91–97

    Article  Google Scholar 

  • Lowry OH, Passonneau JV, Rock MK (1961) The stability of pyridine nucleotides. J Biol Chem 236:2756–2759

    PubMed  CAS  Google Scholar 

  • Lu CD, Abdelal AT (2001) The gdhB gene of Pseudomonas aeruginosa encodes an arginine-inducible NAD+-dependent glutamate dehydrogenase which is subject to allosteric regulation. J Bacteriol 183:490–499

    Article  PubMed  CAS  Google Scholar 

  • Ma K, Robb FT, Adams MW (1994) Purification and characterization of NADP-specific alcohol dehydrogenase and glutamate dehydrogenase from the hyperthermophilic archaeon Thermococcus litoralis. Appl Environ Microbiol 60:562–568

    PubMed  CAS  Google Scholar 

  • Miñambres B, Olivera ER, Jensen RA, Luengo JM (2000) A new class of glutamate dehydrogenases (GDH). Biochemical and genetic characterization of the first member, the AMP-requiring NAD-specific GDH of Streptomyces clavuligerus. J Biol Chem 275:39529–39542

    Article  PubMed  Google Scholar 

  • Munawar N, Engel PC (2012) Overexpression in a non-native halophilic host and biotechnological potential of NAD+-dependent glutamate dehydrogenase from Halobacterium salinarum strain NRC-36014. Extremophiles 16:463–476

    Article  PubMed  CAS  Google Scholar 

  • Perrière G, Gouy M (1996) WWW-query: an on-line retrieval system for biological sequence banks. Biochimie 78:364–369

    Article  PubMed  Google Scholar 

  • Sakamoto N, Kotre AM, Savageau MA (1975) Glutamate dehydrogenase from Escherichia coli: purification and properties. J Bacteriol 124:775–783

    PubMed  CAS  Google Scholar 

  • Smith EL, Austen BM, Blumenthal KM, Nyc JF (1975) Glutamate dehydrogenase. In: Boyer PD (ed) The enzymes 3rd edn, vol 11. Academic Press, NY, pp 293–367

    Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Tomita T, Miyazaki T, Miyazaki J, Kuzuyama T, Nishiyama M (2010) Hetero-oligomeric glutamate dehydrogenase from Thermus thermophilus. Microbiology 156:3801–3813

    Article  PubMed  CAS  Google Scholar 

  • Tomita T, Kuzuyama T, Nishiyama M (2011) Structural basis for leucine-induced allosteric activation of glutamate dehydrogenase. J Biol Chem 286:37406–37413

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Feng Y, Zhang Z, Zheng B, Li N, Cao S, Matsui I, Kosugi Y (2003) Heat effect on the structure and activity of the recombinant glutamate dehydrogenase from a hyperthermophilic archaeon Pyrococcus horikoshii. Arch Biochem Biophys 411:56–62

    Article  PubMed  CAS  Google Scholar 

  • Yip KS, Stillman TJ, Britton KL, Artymiuk PJ, Baker PJ, Sedelnikova SE, Engel PC, Pasquo A, Chiaraluce R, Consalvi V, Scandurra R, Rice DW (1995) The structure of Pyrococcus furiosus glutamate dehydrogenase reveals a key role for ion-pair networks in maintaining enzyme stability at extreme temperatures. Structure 3:1147–1158

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Grant-in-Aid for Scientific Research 22248010 (to T.O.) from the Ministry of Education, Science, Sports and Culture of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taisuke Wakamatsu.

Additional information

Communicated by F. Robb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wakamatsu, T., Higashi, C., Ohmori, T. et al. Biochemical characterization of two glutamate dehydrogenases with different cofactor specificities from a hyperthermophilic archaeon Pyrobaculum calidifontis . Extremophiles 17, 379–389 (2013). https://doi.org/10.1007/s00792-013-0527-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-013-0527-7

Keywords

Navigation