Skip to main content
Log in

Extreme zinc tolerance in acidophilic microorganisms from the bacterial and archaeal domains

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Zinc can occur in extremely high concentrations in acidic, heavy metal polluted environments inhabited by acidophilic prokaryotes. Although these organisms are able to thrive in such severely contaminated ecosystems their resistance mechanisms have not been well studied. Bioinformatic analysis of a range of acidophilic bacterial and archaeal genomes identified homologues of several known zinc homeostasis systems. These included primary and secondary transporters, such as the primary heavy metal exporter ZntA and Nramp super-family secondary importer MntH. Three acidophilic model microorganisms, the archaeon ‘Ferroplasma acidarmanus’, the Gram negative bacterium Acidithiobacillus caldus, and the Gram positive bacterium Acidimicrobium ferrooxidans, were selected for detailed analyses. Zinc speciation modeling of the growth media demonstrated that a large fraction of the free metal ion is complexed, potentially affecting its toxicity. Indeed, many of the putative zinc homeostasis genes were constitutively expressed and with the exception of ‘F. acidarmanus’ ZntA, they were not up-regulated in the presence of excess zinc. Proteomic analysis revealed that zinc played a role in oxidative stress in At. caldus and Am. ferrooxidans. Furthermore, ‘F. acidarmanus’ kept a constant level of intracellular zinc over all conditions tested whereas the intracellular levels increased with increasing zinc exposure in the remaining organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aguilar-Barajas E, Díaz-Pérez C, Ramírez-Díaz M, Riveros-Rosas H, Cervantes C (2011) Bacterial transport of sulfate, molybdate, and related oxyanions. Biometals 24:687–707

    Article  PubMed  CAS  Google Scholar 

  • Almeida W, Vieira R, Cardoso A, Silveira C, Costa R, Gonzalez A et al (2009) Archaeal and bacterial communities of heavy metal contaminated acidic waters from zinc mine residues in Sepetiba Bay. Extremophiles 13:263–271

    Article  PubMed  CAS  Google Scholar 

  • Alvarez S, Jerez CA (2004) Copper ions stimulate polyphosphate degradation and phosphate efflux in Acidithiobacillus ferrooxidans. Appl Environ Microbiol 70:5177–5182

    Article  PubMed  CAS  Google Scholar 

  • Anton A, Groe C, Reimann J, Pribyl T, Nies DH (1999) CzcD is a heavy metal ion transporter involved in regulation of heavy metal resistance in Ralstonia sp. strain CH34. J Bacteriol 181:6876–6881

    PubMed  CAS  Google Scholar 

  • Baker-Austin C, Dopson M, Wexler M, Sawers G, Bond PL (2005) Molecular insight into extreme copper resistance in the extremophilic archaeon “Ferroplasma acidarmanus” Fer1. Microbiology 151:2637–2646

    Article  PubMed  CAS  Google Scholar 

  • Beard SJ, Hughes MN, Poole RK (1995) Inhibition of the cytochrome bd-terminated NADH oxidase system in Escherichia coli K-12 by divalent metal cations. FEMS Microbiol Lett 131:205–210

    Article  PubMed  CAS  Google Scholar 

  • Beard SJ, Hashim R, Membrillo-Hernández J, Hughes MN, Poole RK (1997) Zinc(II) tolerance in Escherichia coli K-12: evidence that the zntA gene (o732) encodes a cation transport ATPase. Mol Microbiol 25:883–891

    Article  PubMed  CAS  Google Scholar 

  • Blencowe DK, Morby AP (2003) Zn(II) metabolism in prokaryotes. FEMS Microbiol Rev 27:291–311

    Article  PubMed  CAS  Google Scholar 

  • Braz VS, da Silva Neto JF, Italiani VCS, Marques MV (2010) CztR, a LysR-type transcriptional regulator involved in zinc homeostasis and oxidative stress defense in Caulobacter crescentus. J Bacteriol 192:5480–5488

    Article  PubMed  CAS  Google Scholar 

  • Brocklehurst KR, Hobman JL, Lawley B, Blank L, Marshall SJ, Brown NL, Morby AP (1999) ZntR is a Zn(II)-responsive MerR-like transcriptional regulator of zntA in Escherichia coli. Mol Microbiol 31:893–902

    Article  PubMed  CAS  Google Scholar 

  • Butcher BG, Deane SM, Rawlings DE (2000) The chromosomal arsenic resistance genes of Thiobacillus ferrooxidans have an unusual arrangement and confer increased arsenic and antimony resistance to Escherichia coli. Appl Environ Microbiol 66:1826–1833

    Article  PubMed  CAS  Google Scholar 

  • Cellier MFM, Bergevin I, Boyer E, Richer E (2001) Polyphyletic origins of bacterial Nramp transporters. Trends Genet 17:365–370

    Article  PubMed  CAS  Google Scholar 

  • Choudhury R, Srivastava S (2001) Zinc resistance mechanisms in bacteria. Curr Sci 81:768–775

    CAS  Google Scholar 

  • Ciavardelli D, Ammendola S, Ronci M, Consalvo A, Marzano V, Lipoma M et al (2011) Phenotypic profile linked to inhibition of the major Zn influx system in Salmonella enterica: proteomics and ionomics investigations. Mol BioSyst 7:608–619

    Article  PubMed  CAS  Google Scholar 

  • Davies CW (1962) Ion Association. Butterworth, London

    Google Scholar 

  • Di Toro DM, Allen HE, Bergman HL, Meyer JS, Paquin PR, Santore RC (2001) Biotic ligand model of the acute toxicity of metals. 1 Technical Basis. Environ Toxicol Chem 20:2383–2396

    Article  PubMed  Google Scholar 

  • Dopson M, Lindström EB (1999) Potential role of Thiobacillus caldus in arsenopyrite bioleaching. Appl Environ Microbiol 65:36–40

    PubMed  CAS  Google Scholar 

  • Dopson M, Baker-Austin C, Koppineedi PR, Bond PL (2003) Growth in sulfidic mineral environments: metal resistance mechanisms in acidophilic micro-organisms. Microbiology 149:1959–1970

    Article  PubMed  CAS  Google Scholar 

  • Dubbs JM, Mongkolsuk S (2007) Peroxiredoxins in bacterial antioxidant defense. In: Flohé L, Harris JR (eds) Peroxiredoxin systems. Springer, Netherlands, pp 143–193

    Chapter  Google Scholar 

  • Easton J, Thompson P, Crowder M (2006) Time-dependent translational response of E. coli to excess Zn(II). J Biomol Tech 17:303–307

    PubMed  Google Scholar 

  • Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14:755–763

    Article  PubMed  CAS  Google Scholar 

  • Elvin CM, Hardy CM, Rosenberg H (1987) Molecular studies on the phosphate inorganic transport system of Escherichia coli. In: Torriani GA, Rothman FG, Silver S, Wright A, Yagil E (eds) Phosphate metabolism and cellular regulation in microorganisms. American Society for Microbiology, Washington, D.C, pp 156–158

    Google Scholar 

  • Eriksson G (1979) An algorithm for the computation of aqueous multicomponent, multiphase equilibria. Anal Chim Acta 112:375–383

    Article  CAS  Google Scholar 

  • Gaballa A, Helmann JD (2002) A peroxide-induced zinc uptake system plays an important role in protection against oxidative stress in Bacillus subtilis. Mol Microbiol 45:997–1005

    Article  PubMed  CAS  Google Scholar 

  • Graham AI, Sanguinetti G, Bramall N, McLeod CW, Poole RK (2012) Dynamics of a starvation-to-surfeit shift: a transcriptomic and modelling analysis of the bacterial response to zinc reveals transient behaviour of the Fur and SoxS regulators. Microbiology 158:284–292

    Article  PubMed  CAS  Google Scholar 

  • Grass G, Fan B, Rosen BP, Franke S, Nies DH, Rensing C (2001) ZitB (YbgR), a member of the cation diffusion facilitator family, is an additional zinc transporter in Escherichia coli. J Bacteriol 183:4664–4667

    Article  PubMed  CAS  Google Scholar 

  • Grass G, Wong MD, Rosen BP, Smith RL, Rensing C (2002) ZupT is a Zn(II) uptake system in Escherichia coli. J Bacteriol 184:864–866

    Article  PubMed  CAS  Google Scholar 

  • Heijerick DG, De Schamphelaere KAC, Janssen CR (2002) Biotic ligand model development predicting Zn toxicity to the alga Pseudokirchneriella subcapitata: possibilities and limitations. Comp Biochem Physiol C: Pharmacol Toxicol Endocrinol 133:207–218

    Article  CAS  Google Scholar 

  • Hudek L, Rai LC, Freestone D, Michalczyk A, Gibson M, Song YF, Ackland ML (2009) Bioinformatic and expression analyses of genes mediating zinc homeostasis in Nostoc punctiforme. Appl Environ Microbiol 75:784–791

    Article  PubMed  CAS  Google Scholar 

  • Karlsson M, Lindgren J (2006) WinSGW, a user interface for SolGasWater. http://www.winsgw.se

  • Kasahara M, Anraku Y (1974) Succinate- and NADH oxidase systems of Escherichia coli membrane vesicles. J Biochem 76:967–976

    PubMed  CAS  Google Scholar 

  • Keasling JD (1997) Regulation of intracellular toxic metals and other cations by hydrolysis of polyphosphate. Ann NY Acad Sci 829:242–249

    Article  PubMed  CAS  Google Scholar 

  • Kondratyeva TF, Muntyan LN, Karavaiko GI (1995) Zinc-resistant and arsenic-resistant strains of Thiobacillus ferrooxidans have increased copy numbers of chromosomal resistance genes. Microbiology 141:1157–1162

    Article  CAS  Google Scholar 

  • Lamarche MG, Wanner BL, Crépin S, Harel J (2008) The phosphate regulon and bacterial virulence: a regulatory network connecting phosphate homeostasis and pathogenesis. FEMS Microbiol Rev 32:461–473

    Article  PubMed  CAS  Google Scholar 

  • Mahapatra NR, Ghosh S, Deb C, Banerjee PC (2002) Resistance to cadmium and zinc in Acidiphilium symbioticum KM2 is plasmid mediated. Curr Microbiol 45:180–186

    Article  PubMed  CAS  Google Scholar 

  • Mangold S, Valdés J, Holmes D, Dopson M (2011) Sulfur metabolism in the extreme acidophile Acidithiobacillus caldus. Front Microbiol 2. doi:10.3389/fmicb.2011.00017

  • Matthews JM, Sunde M (2002) Zinc fingers—folds for many occasions. IUBMB Life 54:351–355

    Article  PubMed  CAS  Google Scholar 

  • Mertens J, Degryse F, Springael D, Smolders E (2007) Zinc toxicity to nitrification in soil and soilless culture can be predicted with the same biotic ligand model. Environ Sci Technol 41:2992–2997

    Article  PubMed  CAS  Google Scholar 

  • Moberly JG, Staven A, Sani RK, Peyton BM (2010) Influence of pH and inorganic phosphate on toxicity of zinc to Arthrobacter sp. isolated from heavy-metal-contaminated sediments. Environ Sci Technol 44:7302–7308

    Article  PubMed  CAS  Google Scholar 

  • Moomaw AS, Maguire ME (2008) The unique nature of Mg2+ channels. Physiology 23:275–285

    Article  PubMed  CAS  Google Scholar 

  • Nancucheo I, Johnson DB (2010) Production of glycolic acid by chemolithotrophic iron- and sulfur-oxidizing bacteria and its role in delineating and sustaining acidophilic sulfide mineral-oxidizing consortia. Appl Environ Microbiol 76:461–467

    Article  PubMed  CAS  Google Scholar 

  • Navarro CA, Orellana LH, Mauriaca C, Jerez CA (2009) Transcriptional and functional studies of Acidithiobacillus ferrooxidans genes related to survival in the presence of copper. Appl Environ Microbiol 75:6102–6109

    Article  PubMed  CAS  Google Scholar 

  • Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750

    Article  PubMed  CAS  Google Scholar 

  • Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27:313–339

    Article  PubMed  CAS  Google Scholar 

  • Nies D, Mergeay M, Friedrich B, Schlegel HG (1987) Cloning of plasmid genes encoding resistance to cadmium, zinc, and cobalt in Alcaligenes eutrophus CH34. J Bacteriol 169:4865–4868

    PubMed  CAS  Google Scholar 

  • Nordstrom DK, Alpers CN (1999) Negative pH, efflorescent mineralogy, and consequences for environmental restoration at the iron mountain superfund site, California. Proc Natl Acad Sci USA 96:3455–3462

    Article  PubMed  CAS  Google Scholar 

  • Nucifora G, Chu L, Misra TK, Silver S (1989) Cadmium resistance from Staphylococcus aureus plasmid pI258 cadA gene results from a cadmium-efflux ATPase. Proc Natl Acad Sci USA 86:3544–3548

    Article  PubMed  CAS  Google Scholar 

  • Orell A, Navarro CA, Arancibia R, Mobarec JC, Jerez CA (2010) Life in blue: copper resistance mechanisms of bacteria and archaea used in industrial biomining of minerals. Biotechnol Adv 28:839–848

    Article  PubMed  CAS  Google Scholar 

  • Pagani MA, Casamayor A, Serrano R, Atrian S, Ariño J (2007) Disruption of iron homeostasis in Saccharomyces cerevisiae by high zinc levels: a genome-wide study. Mol Microbiol 65:521–537

    Article  PubMed  CAS  Google Scholar 

  • Parkson Lee-Gau C (2010) Archaebacterial bipolar tetraether lipids: physico-chemical and membrane properties. Chem Phys Lipids 163:253–265

    Article  Google Scholar 

  • Patzer SI, Hantke K (1998) The ZnuABC high-affinity zinc uptake system and its regulator Zur in Escherichia coli. Mol Microbiol 28:1199–1210

    Article  PubMed  CAS  Google Scholar 

  • Potrykus J, Jonna VR, Dopson M (2011) Iron homeostasis and responses to iron limitation in extreme acidophiles from the Ferroplasma genus. Proteomics 11:52–63

    Article  PubMed  CAS  Google Scholar 

  • Renshaw JC, Butchins LJC, Livens FR, May I, Charnock JM, Lloyd JR (2005) Bioreduction of uranium: environmental implications of a pentavalent intermediate. Environ Sci Technol 39:5657–5660

    Article  PubMed  CAS  Google Scholar 

  • Rensing C, Mitra B, Rosen BP (1997) The zntA gene of Escherichia coli encodes a Zn(II)-translocating P-type ATPase. Proc Natl Acad Sci USA 94:14326–14331

    Article  PubMed  CAS  Google Scholar 

  • Rzhepishevska O, Ekstrand-Hammarström B, Popp M, Björn E, Bucht A, Sjöstedt A et al (2011) The antibacterial activity of Ga3+ is influenced by ligand complexation as well as the bacterial carbon source. Antimicrob Agents Chemother 55:5568–5580

    Article  PubMed  CAS  Google Scholar 

  • Sigdel T, Cilliers R, Gursahaney P, Thompson P, Easton J, Crowder M (2006) Probing the adaptive response of Escherichia coli to extracellular Zn(II). Biometals 19:461–471

    Article  PubMed  CAS  Google Scholar 

  • Slonczewski JL, Fujisawa M, Dopson M, Krulwich TA, Robert KP (2009) Cytoplasmic pH measurement and homeostasis in bacteria and archaea. Adv Microb Physiol 55(1–79):317

    Google Scholar 

  • Smith KS (2007) Strategies to predict metal mobility in surficial mining environments. Understanding and responding to hazardous substances at mine sites in the Western United States. Geological Society of America, Inc., Boulder, pp 25–44

    Google Scholar 

  • Thelwell C, Robinson NJ, Turner-Cavet JS (1998) An SmtB-like repressor from Synechocystis PCC 6803 regulates a zinc exporter. Proc Natl Acad Sci USA 95:10728–10733

    Article  PubMed  CAS  Google Scholar 

  • Tseng TT, Gratwick KS, Kollman J, Park D, Nies DH, Goffeau A, Saier MH (1999) The RND permease superfamily: an ancient ubiquitous and diverse family that includes human disease and development proteins. J Mol Microbiol Biotechnol 1:107–125

    PubMed  CAS  Google Scholar 

  • Vallee BL, Auld DS (1990) Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry 29:5647–5659

    Article  PubMed  CAS  Google Scholar 

  • van Veen HW (1997) Phosphate transport in prokaryotes: molecules, mediators and mechanisms. Antonie Van Leeuwenhoek 72:299–315

    Article  PubMed  Google Scholar 

  • van Zyl LJ, van Munster JM, Rawlings DE (2008) Construction of arsB and tetH mutants of the sulfur-oxidizing bacterium Acidithiobacillus caldus by marker exchange. Appl Environ Microbiol 74:5686–5694

    Article  PubMed  Google Scholar 

  • Worlock AJ, Smith RL (2002) ZntB is a novel Zn2+ transporter in Salmonella enterica Serovar Typhimurium. J Bacteriol 184:4369–4373

    Article  PubMed  CAS  Google Scholar 

  • Zammit C, Mangold S, rao Jonna V, Mutch L, Watling H, Dopson M, Watkin E (2012) Bioleaching in brackish waters—effect of chloride ions on the acidophile population and proteomes of model species. Appl Microbiol Biotechnol 93:319–329

    Article  PubMed  Google Scholar 

  • Zeng J, Wang W-X (2009) The importance of cellular phosphorus in controlling the uptake and toxicity of cadmium and zinc in Microcystis Aeruginosa, a freshwater cyanobacterium. Environ Toxicol Chem 28:1618–1626

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Caroline Ödling for her initial work on the bioinformatic predictions of zinc transporters, Siv Sääf for carrying out growth experiments, and Maria Liljeqvist for discussions and critical reading of the manuscript. This project was funded by the Swedish Research Council (Vetenskapsrådet contract number 621-2007-3537).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefanie Mangold.

Additional information

Communicated by M. da Costa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 823 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mangold, S., Potrykus, J., Björn, E. et al. Extreme zinc tolerance in acidophilic microorganisms from the bacterial and archaeal domains. Extremophiles 17, 75–85 (2013). https://doi.org/10.1007/s00792-012-0495-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-012-0495-3

Keywords

Navigation