Skip to main content

Advertisement

Log in

Bacterial chitin utilisation at extremely haloalkaline conditions

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Chitin is produced in large amounts in hypersaline habitats with neutral pH due to the high biomass production of brine shrimp Artemia. Recently, a high abundance of Artemia was also noticed in hypersaline soda lakes in the Kulunda Steppe (Altai, Russia), which prompted us to survey the possibility of microbial chitin utilization at extremely haloalkaline conditions in soda brines. Most active chitin utilisation-supporting microbial growth was found at anaerobic conditions at pH 10 and up to 3.5 M total Na+. At aerobic conditions, the degradation of chitin was slower, mostly incomplete and active at <2 M total Na+, although very slow partial degradation was possible up to 4 M Na+. Anaerobic enrichments at pH 10 yielded two different groups of obligately haloalkaliphilic fermentative anaerobes, exclusively specialized to utilise insoluble chitin as the only growth substrate. One group was represented by a single strain growing at moderate salinity, and another comprised multiple isolates growing up to 3.5 M Na+. These groups represent two novel bacterial phyla not closely related to any other cultured bacteria. Aerobic enrichments from the lake sediments were dominated by several obligately haloalkaliphilic members of the genus Marinimicrobium in the Gammaproteobacteria. They were less specialised than the anaerobes and grew with chitin and its monomer and oligomers at a pH of 10 up to 2.5 M Na+. Furthermore, several strains of haloalkaliphilic Gram-positive chitinolytics belonging to bacilli and actinobacteria were isolated from soda lake sediments and surrounding soda soils. In general, the results indicate the presence of an active and diverse haloalkaliphilic chitinolytic microbial community in hypersaline soda habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andronopoulou E, Vorgias CE (2004) Multiple components and induction mechanism of the chitinolytic system of the hyperthermophilic archaeon Thermococcus chitonophagus. Appl Microbiol Biotechnol 65:694–702

    Article  PubMed  CAS  Google Scholar 

  • Bansode VB, Bajekal SS (2006) Characterization of chitinases from microorganisms isolated from Lonar Lake. Indian J Biotechnol 5:357–363

    CAS  Google Scholar 

  • Bhushan B, Hoondal GS (1998) Isolation, purification and properties of a thermostable chitinase from an alkalophilic Bacillus sp. BG-11. Biotechnol Lett 20:157–159

    Article  CAS  Google Scholar 

  • Gao J, Bauer MW, Shockley KR, Pysz MA, Kelly RM (2003) Growth of hyperthermophilic archaeon Pyrococcus furiosus on chitin involves two family 18 chitinases. Appl Environ Microbiol 69:3119–3128

    Article  PubMed  CAS  Google Scholar 

  • Gooday G (1990) The ecology of chitin degradation. In: Marshall K (ed) Advances in microbial ecology. Plenum Press, New York, pp 387–430

    Chapter  Google Scholar 

  • Hatori Y, Sato M, Orishimo K, Yatsunami R, Endo K, Fukui T, Nakamura S (2005) Analysis of functional domains of a family 18 chitinase from extremely halophilic archaeon Halobacterium sp., strain NRC-1. Chitin Chitosan Res 11:220

    Google Scholar 

  • Hatori Y, Sato M, Orishimo K, Yatsunami R, Endo K, Fukui T, Nakamura S (2006) Characterization of recombinant family 18 chitinase from extremely halophilic archaeon Halobacterium salinarum strain NRC-1. Chitin Chitosan Res 12:201

    Google Scholar 

  • Hau-Heredia L, Granados-Baeza MJ, Cardos-Vidal A, Escamillasánchez JB, Solis S, Ortiz-Milán S, Rivera-Muñoz G (2009) Chitinolytic bacterial isolation from solar saltworks. In: Proceedings of 2nd International Conference on Ecological Importance of Solar Saltworks (CEISSA 2009), Merida, Mexico, pp 57–62

  • Hongoh Y (2010) Diversity and genomes of uncultured microbial symbionts in the termite gut. Biosci Biotechnol Biochem 74:100094-1-7

    Google Scholar 

  • Hongoh Y, Deevong P, Inoue T, Moriya S, Trakulnaleamsai S, Ohkuma M, Vongkaluang C, Noparatnaraporn N, Kudo T (2005) Intra- and interspecific comparisons of bacterial diversity and community structure support coevolution of gut microbiota and termite host. Appl Environ Microbiol 71:6590–6599

    Article  PubMed  CAS  Google Scholar 

  • Hongoh Y, Deevong P, Hattori S, Inoue T, Noda T, Noparatnaraporn N, Kudo T, Ohkuma M (2006) Phylogenetic diversity, localization, and cell morphologies of members of the Candidate phylum TG3 and a subphylum in the phylum Fibrobacteres, recently discovered bacterial groups dominant in termite guts. Appl Environ Microbiol 72:6780–6788

    Article  PubMed  CAS  Google Scholar 

  • Howard MB, Ekborg NA, Taylor LE, Weiner RM, Hutcheson SW (2003) Genomic analysis and initial characterization of the chitinolytic system of Microbulbifer degradans strain 2–40. J Bacteriol 185:3352–3360

    Article  PubMed  CAS  Google Scholar 

  • Jagmann N, Brachvogel H-P, Philipp B (2010) Parasitic growth of Pseudomonas aeruginosa in co-culture with the chitinolytic bacterium Aeromonas hydrophila. Environ Microbiol 12:1787–1802

    Article  PubMed  CAS  Google Scholar 

  • Jones BE, Grant WD, Duckworth AW, Schumann P, Weiss N, Stackebrandt E (2005) Cellulomonas bogoriensis sp. nov., an alkaliphilic cellulomonad. Int J Syst Evol Microbiol 55:1711–1714

    Article  PubMed  CAS  Google Scholar 

  • Karlsson M, Stenlid J (2008) Evolution of family 18 glycoside hydrolases: diversity, domain structures and phylogenetic relationships

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–177

    Google Scholar 

  • LeCleir GR, Hollibaugh JT (2006) Chitinolytic bacteria from alkaline hypersaline Mono Lake, California. Aquat Microb Ecol 42:255–264

    Article  Google Scholar 

  • LeCleir GR, Buchan A, Maurer J, Moran MA, Hollibaugh JT (2007) Comparison of chitinolytic enzymes from an alkaline, hypersaline lake and an estuary. Environ Microbiol 9:197–205

    Article  PubMed  CAS  Google Scholar 

  • Liaw HJ, Mah RA (1992) Isolation and characterization of Haloanaerobacter chitinovorans gen. nov., sp. nov., a halophilic, anaerobic, chitinolytic bacterium from a solar saltern. Appl Environ Microbiol 58:260–266

    PubMed  CAS  Google Scholar 

  • Lim J-M, Jeon CO, Lee J-C, Song S-M, Kim K-Y, Kim C-J (2006) Marinimicrobium koreense gen. nov., sp. nov. and Marinimicrobium agarilyticum sp. nov., novel moderately halotolerant bacteria isolated from tidal flat sediment in Korea. Int J Syst Evol Microbiol 56:653–657

    Article  PubMed  CAS  Google Scholar 

  • Møller MF, Kjeldsen KU, Ingvorsen K (2010) Marinimicrobium haloxylanilyticum sp. nov., a new moderately halophilic, polysaccharide-degrading bacterium isolated from Great Salt Lake, Utah. Ant van Leeuwenhoek 98:553–565

    Article  Google Scholar 

  • Pfennig N, Lippert KD (1966) HÜber das Vitamin B12-Bedürfnis phototropher SchwefelbakterienH. Arch Mikrobiol 55:245–256

    Article  CAS  Google Scholar 

  • Sampei Z, Nagao Y, Fukazawa T, Fukagawa S, Matsuo T, Endo K, Yatsunami R, Nakamura S (2004) Gene cloning and deletion analysis of chitinase J from alkaliphilic Bacillus sp. strain J813. Nucleic Acids Symp Ser 48:167–168

    Article  Google Scholar 

  • Sarethy IP, Saxena Y, Kapoor A, Sharma M, Sharma SK, Gupta V, Gupta S (2011) Alkaliphilic bacteria: applications in industrial biotechnology. J Ind Microbiol Biotechnol 38:769–790

    Article  PubMed  CAS  Google Scholar 

  • Sorokin DY, Panteleeva AN, Tourova TP, Kaparullina EN, Muyzer G (2011) Natronoflexus pectinivorans gen. nov., sp. nov., an obligately anaerobic and alkaliphilic fermentative member of Bacteroidetes from soda lakes. Extremophiles 15:691–696

    Article  PubMed  CAS  Google Scholar 

  • Suresh PV, Chandrasekaran M (1999) Impact of process parameters on chitinase production by an alkalophilic marine Beauveria bassiana in solid state fermentation. Process Biochem 34:257–267

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  Google Scholar 

  • Tsujibo H, Kubota T, Yamamoto M, Miyamoto K, Inamori Y (2003) Characterization of chitinase genes from an alkaliphilic actinomycete, Nocardiopsis prasina OPC-131. Appl Environ Microbiol 69:894–900

    Article  PubMed  CAS  Google Scholar 

  • van de Peer Y, de Wachter R (1994) TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10:569–570

    PubMed  Google Scholar 

  • Wanga S-L, Lianga T-W, Yenc Y-H (2010) Bioconversion of chitin-containing wastes for the production of enzymes and bioactive materials. Carbohydr Polym 84:732–742

    Article  Google Scholar 

  • Weatherburn MV (1967) Phenol-hypochlorite reaction for determination of ammonia. Anal Chem 39:971–974

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by RFBR (10-04-00152) to DS and by the Ministry of Education and Science of Russian Federation within the frame work of the Federal Program “Priority research on development of the science and technology potential of Russia in 2007–2013” to MS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Y. Sorokin.

Additional information

Communicated by S. Albers.

Nucleotide sequence accession numbers: The GenBank/EMBL accession numbers of the 16S rRNA gene sequences obtained in this work are JF304641–JF304649 and JQ901948–JQ901959.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 353 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sorokin, D.Y., Tourova, T.P., Sukhacheva, M.V. et al. Bacterial chitin utilisation at extremely haloalkaline conditions. Extremophiles 16, 883–894 (2012). https://doi.org/10.1007/s00792-012-0484-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-012-0484-6

Keywords

Navigation