Skip to main content
Log in

Identification and characterization of a unique, zinc-containing transport ATPase essential for natural transformation in Thermus thermophilus HB27

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Thermus thermophilus is a model strain to unravel the molecular basis of horizontal gene transfer in hot environments. Previous genetic studies led to the identification of a macromolecular transport machinery mediating DNA uptake in an energy-dependent manner. Here, we have addressed how the transporter is energized. Inspection of the genome sequence revealed four putative transport (AAA) ATPases but only the deletion of one, PilF, led to a transformation defect. PilF is similar to transport ATPases of type IV and type II secretions systems but has a unique N-terminal sequence that carries a triplicated GSPII domain. To characterize PilF biochemically it was produced in Escherichia coli and purified. The recombinant protein displayed NTPase activity with a preference for ATP. Gel filtration analyses combined with dynamic light scattering demonstrated that PilF is monodispersed in solution and forms a complex of 590 ± 30 kDa, indicating a homooligomer of six subunits. It contains a tetracysteine motif, previously shown to bind Zn2+ in related NTPases. Using atomic absorption spectroscopy, indeed Zn2+ was detected in the enzyme, but in contrast to all known zinc-binding traffic NTPases only one zinc atom was bound to the hexamer. Deletion of the four cysteine residues led to a loss of Zn2+. Nevertheless, the mutant protein retained ATPase activity and hexameric complex formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abendroth J, Murphy P, Sandkvist M, Bagdasarian M, Hol WG (2005) The X-ray structure of the type II secretion system complex formed by the N-terminal domain of EpsE and the cytoplasmic domain of EpsL of Vibrio cholerae. J Mol Biol 348:845–855

    Article  PubMed  CAS  Google Scholar 

  • Aravind L, Tatusov RL, Wolf YI, Walker DR, Koonin EV (1998) Evidence for massive gene exchange between archaeal and bacterial hyperthermophiles. Trends Genet 14:442–444

    Article  PubMed  CAS  Google Scholar 

  • Averhoff B (2004) DNA transport and natural transformation in mesophilic and thermophilic bacteria. J Bioenerg Biomembr 36:25–33

    Article  PubMed  CAS  Google Scholar 

  • Averhoff B (2009) Shuffling genes around in hot environments: the unique DNA transporter of Thermus thermophilus. FEMS Microbiol Rev 33:611–626

    Article  PubMed  CAS  Google Scholar 

  • Banecki B, Wawrzynow A, Puzewicz J, Georgopoulos C, Zylicz M (2001) Structure-function analysis of the zinc-binding region of the ClpX molecular chaperone. J Biol Chem 276:18843–18848

    Article  PubMed  CAS  Google Scholar 

  • Böhm G, Muhr R, Jaenicke R (1992) Quantitative analysis of protein far UV circular dichroism spectra by neural networks. Protein Eng 5:191–195

    Article  PubMed  Google Scholar 

  • Camberg JL, Sandkvist M (2005) Molecular analysis of the Vibrio cholerae type II secretion ATPase EpsE. J Bacteriol 187:249–256

    Article  PubMed  CAS  Google Scholar 

  • Camberg JL, Johnson TL, Patrick M, Abendroth J, Hol WG, Sandkvist M (2007) Synergistic stimulation of EpsE ATP hydrolysis by EpsL and acidic phospholipids. EMBO J 26:19–27

    Article  PubMed  CAS  Google Scholar 

  • Chen I, Dubnau D (2003) DNA transport during transformation. Front Biosci 8:544–556

    Article  Google Scholar 

  • Chen I, Dubnau D (2004) DNA uptake during bacterial transformation. Nat Rev Microbiol 2:241–249

    Article  PubMed  CAS  Google Scholar 

  • Chen I, Christie PJ, Dubnau D (2005a) The ins and outs of DNA transfer in bacteria. Science 310:1456–1460

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Shiue SJ, Huang CW, Chang JL, Chien YL, Hu NT, Chan NL (2005b) Structure and function of the XpsE N-terminal domain, an essential component of the Xanthomonas campestris type II secretion system. J Biol Chem 280:42356–42363

    Article  PubMed  CAS  Google Scholar 

  • Chen I, Provvedi R, Dubnau D (2006) A macromolecular complex formed by a pilin-like protein in competent Bacillus subtilis. J Biol Chem 281:21720–21727

    Article  PubMed  CAS  Google Scholar 

  • Chiang P, Sampaleanu LM, Ayers M, Pahuta M, Howell PL, Burrows LL (2008) Functional role of conserved residues in the characteristic secretion NTPase motifs of the Pseudomonas aeruginosa type IV pilus motor proteins PilB, PilT and PilU. Microbiology 154:114–126

    Article  PubMed  CAS  Google Scholar 

  • Clausen M, Jakovljevic V, Sogaard-Andersen L, Maier B (2009) High-force generation is a conserved property of type IV pilus systems. J Bacteriol 191:4633–4638

    Article  PubMed  CAS  Google Scholar 

  • Collins RF, Frye SA, Balasingham S, Ford RC, Tonjum T, Derrick JP (2005) Interaction with type IV pili induces structural changes in the bacterial outer membrane secretin PilQ. J Biol Chem 280:18923–18930

    Article  PubMed  CAS  Google Scholar 

  • Crowther LJ, Yamagata A, Craig L, Tainer JA, Donnenberg MS (2005) The ATPase activity of BfpD is greatly enhanced by zinc and allosteric interactions with other Bfp proteins. J Biol Chem 280:24839–24848

    Article  PubMed  CAS  Google Scholar 

  • Deleage G, Geourjon C (1993) An interactive graphic program for calculating the secondary structure content of proteins from circular dichroism spectrum. Comput Appl Biosci 9:197–199

    PubMed  CAS  Google Scholar 

  • Donaldson LW, Wojtyra U, Houry WA (2003) Solution structure of the dimeric zinc binding domain of the chaperone ClpX. J Biol Chem 278:48991–48996

    Article  PubMed  CAS  Google Scholar 

  • Draskovic I, Dubnau D (2005) Biogenesis of a putative channel protein, ComEC, required for DNA uptake: membrane topology, oligomerization and formation of disulphide bonds. Mol Microbiol 55:881–896

    Article  PubMed  CAS  Google Scholar 

  • Facius D, Meyer TF (1993) A novel determinant (comA) essential for natural transformation competence in Neisseria gonorrhoeae and the effect of a comA defect on pilin variation. Mol Microbiol 10:699–712

    Article  PubMed  CAS  Google Scholar 

  • Fekkes P, de Wit JG, Boorsma A, Friesen RH, Driessen AJ (1999) Zinc stabilizes the SecB binding site of SecA. Biochemistry 38:5111–5116

    Article  PubMed  CAS  Google Scholar 

  • Forest KT, Satyshur KA, Worzalla GA, Hansen JK, Herdendorf TJ (2004) The pilus-retraction protein PilT: ultrastructure of the biological assembly. Acta Crystallogr D Biol Crystallogr 60:978–982

    Article  PubMed  Google Scholar 

  • Freitag NE, Seifert HS, Koomey M (1995) Characterization of the pilF-pilD pilus-assembly locus of Neisseria gonorrhoeae. Mol Microbiol 16:575–586

    Article  PubMed  CAS  Google Scholar 

  • Friedrich A, Hartsch T, Averhoff B (2001) Natural transformation in mesophilic and thermophilic bacteria: identification and characterization of novel, closely related competence genes in Acinetobacter sp. strain BD413 and Thermus thermophilus HB27. Appl Environ Microbiol 67:3140–3148

    Article  PubMed  CAS  Google Scholar 

  • Friedrich A, Prust C, Hartsch T, Henne A, Averhoff B (2002) Molecular analyses of the natural transformation machinery and identification of pilus structures in the extremely thermophilic bacterium Thermus thermophilus strain HB27. Appl Environ Microbiol 68:745–755

    Article  PubMed  CAS  Google Scholar 

  • Friedrich A, Rumszauer J, Henne A, Averhoff B (2003) Pilin-like proteins in the extremely thermophilic bacterium Thermus thermophilus HB27: implication in competence for natural transformation and links to type IV pilus biogenesis. Appl Environ Microbiol 69:3695–3700

    Article  PubMed  CAS  Google Scholar 

  • Fussenegger M, Rudel T, Barten R, Ryll R, Meyer TF (1997) Transformation competence and type-IV pilus biogenesis in Neisseria gonorrhoeae. Gene 192:125–134

    Article  PubMed  CAS  Google Scholar 

  • Heinonen JK, Lahti RJ (1981) A new and convenient colorimetric determination of inorganic orthophosphate and its application to the assay of inorganic pyrophosphatase. Anal Biochem 113:313–317

    Article  PubMed  CAS  Google Scholar 

  • Herdendorf TJ, McCaslin DR, Forest KT (2002) Aquifex aeolicus PilT, homologue of a surface motility protein, is a thermostable oligomeric NTPase. J Bacteriol 184:6465–6471

    Article  PubMed  CAS  Google Scholar 

  • Hobbs M, Mattick JS (1993) Common components in the assembly of type 4 fimbriae, DNA transfer systems, filamentous phage and protein-secretion apparatus: a general system for the formation of surface-associated protein complexes. Mol Microbiol 10:233–243

    Article  PubMed  CAS  Google Scholar 

  • Hoshino T, Kageyama M (1980) Purification and properties of a binding protein for branched-chain amino acids in Pseudomonas aeruginosa. J Bacteriol 141:1055–1063

    PubMed  CAS  Google Scholar 

  • Jakovljevic V, Leonardy S, Hoppert M, Sogaard-Andersen L (2008) PilB and PilT are ATPases acting antagonistically in type IV pilus function in Myxococcus xanthus. J Bacteriol 190:2411–2421

    Article  PubMed  CAS  Google Scholar 

  • Krause S, Barcena M, Pansegrau W, Lurz R, Carazo JM, Lanka E (2000a) Sequence-related protein export NTPases encoded by the conjugative transfer region of RP4 and by the cag pathogenicity island of Helicobacter pylori share similar hexameric ring structures. Proc Natl Acad Sci USA 97:3067–3072

    Article  PubMed  CAS  Google Scholar 

  • Krause S, Pansegrau W, Lurz R, de la Cruz F, Lanka E (2000b) Enzymology of type IV macromolecule secretion systems: the conjugative transfer regions of plasmids RP4 and R388 and the cag pathogenicity island of Helicobacter pylori encode structurally and functionally related nucleoside triphosphate hydrolases. J Bacteriol 182:2761–2770

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Maier B, Potter L, So M, Long CD, Seifert HS, Sheetz MP (2002) Single pilus motor forces exceed 100 pN. Proc Natl Acad Sci USA 99:16012–16017

    Article  PubMed  CAS  Google Scholar 

  • Nelson KE, Clayton RA, Gill SR, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Nelson WC, Ketchum KA, McDonald L, Utterback TR, Malek JA, Linher KD, Garrett MM, Stewart AM, Cotton MD, Pratt MS, Phillips CA, Richardson D, Heidelberg J, Sutton GG, Fleischmann RD, Eisen JA, White O, Salzberg SL, Smith HO, Venter JC, Fraser CM (1999) Evidence for lateral gene transfer between archaea and bacteria from genome sequence of Thermotoga maritima. Nature 399:323–329

    Article  PubMed  CAS  Google Scholar 

  • Pantazaki AA, Pritsa AA, Kyriakidis DA (2002) Biotechnologically relevant enzymes from Thermus thermophilus. Appl Microbiol Biotechnol 58:1–12

    Article  PubMed  CAS  Google Scholar 

  • Planet PJ, Kachlany SC, DeSalle R, Figurski DH (2001) Phylogeny of genes for secretion NTPases: identification of the widespread tadA subfamily and development of a diagnostic key for gene classification. Proc Natl Acad Sci USA 98:2503–2508

    Article  PubMed  CAS  Google Scholar 

  • Possot O, d’Enfert C, Reyss I, Pugsley AP (1992) Pullulanase secretion in Escherichia coli K-12 requires a cytoplasmic protein and a putative polytopic cytoplasmic membrane protein. Mol Microbiol 6:95–105

    Article  PubMed  CAS  Google Scholar 

  • Rivas S, Bolland S, Cabezon E, Goni FM, de la Cruz F (1997) TrwD, a protein encoded by the IncW plasmid R388, displays an ATP hydrolase activity essential for bacterial conjugation. J Biol Chem 272:25583–25590

    Article  PubMed  CAS  Google Scholar 

  • Robien MA, Krumm BE, Sandkvist M, Hol WG (2003) Crystal structure of the extracellular protein secretion NTPase EpsE of Vibrio cholerae. J Mol Biol 333:657–674

    Article  PubMed  CAS  Google Scholar 

  • Rumszauer J, Schwarzenlander C, Averhoff B (2006) Identification, subcellular localization, and functional interactions of PilMNOWQ and PilA4 involved in transformation competency and pilus biogenesis in the thermophilic bacterium Thermus thermophilus HB27. FEBS J 273:3261–3272

    Article  PubMed  CAS  Google Scholar 

  • Savvides SN, Yeo HJ, Beck MR, Blaesing F, Lurz R, Lanka E, Buhrdorf R, Fischer W, Haas R, Waksman G (2003) VirB11 ATPases are dynamic hexameric assemblies: new insights into bacterial type IV secretion. EMBO J 22:1969–1980

    Article  PubMed  CAS  Google Scholar 

  • Schwarzenlander C, Averhoff B (2006) Characterization of DNA transport in the thermophilic bacterium Thermus thermophilus HB27. FEBS J 273:4210–4218

    Article  PubMed  CAS  Google Scholar 

  • Schwarzenlander C, Haase W, Averhoff B (2009) The role of single subunits of the DNA transport machinery of Thermus thermophilus HB27 in DNA binding and transport. Environ Microbiol 11:801–808

    Article  PubMed  CAS  Google Scholar 

  • Sexton JA, Pinkner JS, Roth R, Heuser JE, Hultgren SJ, Vogel JP (2004) The Legionella pneumophila PilT homologue DotB exhibits ATPase activity that is critical for intracellular growth. J Bacteriol 186:1658–1666

    Article  PubMed  CAS  Google Scholar 

  • Tonjum T, Koomey M (1997) The pilus colonization factor of pathogenic neisserial species: organelle biogenesis and structure/function relationships. Gene 192:155–163

    Article  PubMed  CAS  Google Scholar 

  • Turner LR, Lara JC, Nunn DN, Lory S (1993) Mutations in the consensus ATP-binding sites of XcpR and PilB eliminate extracellular protein secretion and pilus biogenesis in Pseudomonas aeruginosa. J Bacteriol 175:4962–4969

    PubMed  CAS  Google Scholar 

  • Whitchurch CB, Mattick JS (1994) Characterization of a gene, pilU, required for twitching motility but not phage sensitivity in Pseudomonas aeruginosa. Mol Microbiol 13:1079–1091

    Article  PubMed  CAS  Google Scholar 

  • Wolfgang M, Lauer P, Park HS, Brossay L, Hebert J, Koomey M (1998) PilT mutations lead to simultaneous defects in competence for natural transformation and twitching motility in piliated Neisseria gonorrhoeae. Mol Microbiol 29:321–330

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work from the Averhoff laboratory was supported by grants Av9/4-4, Av9/4-5 and Av9/5-1 from the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie, the BMBF and the Center for Membrane Proteomics, Goethe University, Frankfurt. We are especially grateful to Katharina Baatz and Alexandra Friedrich for generating Thermus TTC1844 and TTC1621 mutants and Jose Berenguer (Madrid) for providing S-layer antibodies. Research performed by the laboratory of G. Grüber was supported by a grant from the Ministry of Education, Singapore (ARC 6/06) and the School of Biological Sciences, Nanyang Technological University, Singapore.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gerhard Grüber or Beate Averhoff.

Additional information

Communicated by A. Driessen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 293 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rose, I., Biuković, G., Aderhold, P. et al. Identification and characterization of a unique, zinc-containing transport ATPase essential for natural transformation in Thermus thermophilus HB27. Extremophiles 15, 191–202 (2011). https://doi.org/10.1007/s00792-010-0343-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-010-0343-2

Keywords

Navigation