Skip to main content

Advertisement

Log in

Systematic analysis of HSP gene expression and effects on cell growth and survival at high hydrostatic pressure in Saccharomyces cerevisiae

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

We systematically investigated the role of HSP genes in the growth and survival of Saccharomyces cerevisiae under high hydrostatic pressure together with analysis of pressure-regulated gene expression. Cells of strain BY4742 were capable of growth at moderate pressure of 25 MPa. When pressure of 25 MPa was applied to the cells, the expression of HSP78, HSP104, and HSP10 was upregulated by about 3- to 4-fold, and that of HSP32, HSP42, and HSP82 was upregulated by about 2- to 2.6-fold. However, the loss of one of the six genes did not markedly affect growth at 25 MPa, while the loss of HSP31 impaired high-pressure growth. These results suggest that Hsp31 plays a role in high-pressure growth but that the six upregulated genes do not. Extremely high pressure of 125 MPa decreased the viability of the wild-type cells to 1% of the control level. Notably, the loss of HSP genes other than HSP31 enhanced the survival rate by about fivefold at 125 MPa, suggesting that the cellular defensive system against high pressure could be strengthened upon the loss of the HSP genes. In this paper, we describe the requirement for and significance of a subset of HSP genes in yeast cell growth at moderate pressure and survival at extremely high pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abe F, Horikoshi K (1997) Vacuolar acidification in Saccharomyces cerevisiae induced by elevated hydrostatic pressure is transient and is mediated by vacuolar H+-ATPase. Extremophiles 1:89–93

    Article  PubMed  CAS  Google Scholar 

  • Abe F, Horikoshi K (1998) Analysis of intracellular pH in the yeast Saccharomyces cerevisiae under elevated hydrostatic pressure: a study in baro-(piezo-)physiology. Extremophiles 2:223–228

    Article  PubMed  CAS  Google Scholar 

  • Abe F, Horikoshi K (2000) Tryptophan permease gene TAT2 confers high-pressure growth in Saccharomyces cerevisiae. Mol Cell Biol 20:8093–8102

    Article  PubMed  CAS  Google Scholar 

  • Abe F, Iida H (2003) Pressure-induced differential regulation of the two tryptophan permeases Tat1 and Tat2 by ubiquitin ligase Rsp5 and its binding proteins, Bul1 and Bul2. Mol Cell Biol 23:7566–7584

    Article  PubMed  CAS  Google Scholar 

  • Abe F (2004) Piezophysiology of yeast: occurrence and significance. Cell Mol Biol 50:437–445

    PubMed  CAS  Google Scholar 

  • Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19:185–193

    Article  PubMed  CAS  Google Scholar 

  • Causton HC, Ren B, Koh SS, Harbison CT, Kanin E, Jennings EG, Lee TI, True HL, Lander ES, Young RA (2001) Remodeling of yeast genome expression in response to environmental changes. Mol Biol Cell 12:323–337

    PubMed  CAS  Google Scholar 

  • Craig EA, Jacobsen K (1984) Mutations of the heat inducible 70 kilodalton genes of yeast confer temperature sensitive growth. Cell 38:841–849

    Article  PubMed  CAS  Google Scholar 

  • Craig EA, Gross CA (1991) Is hsp70 the cellular thermometer? Trends Biochem Sci 16:135–140

    Article  PubMed  CAS  Google Scholar 

  • de Nobel H, Lawrie L, Brul S, Klis F, Davis M, Alloush H, Coote P (2001) Parallel and comparative analysis of the proteome and transcriptome of sorbic acid-stressed Saccharomyces cerevisiae. Yeast 18:1413–1428

    Article  PubMed  Google Scholar 

  • Dubaquie Y, Looser R, Rospert S (1997) Significance of chaperonin 10-mediated inhibition of ATP hydrolysis by chaperonin 60. Proc Natl Acad Sci USA 94:9011–9016

    Article  PubMed  CAS  Google Scholar 

  • Erkine AM, Magrogan SF, Sekinger EA, Gross DS (1999) Cooperative binding of heat shock factor to the yeast HSP82 promoter in vivo and in vitro. Mol Cell Biol 19:1627–1639

    PubMed  CAS  Google Scholar 

  • Ferguson SB, Anderson ES, Harshaw RB, Thate T, Craig NL, Nelson HC (2005) Protein kinase A regulates constitutive expression of small heat-shock genes in an Msn2/4p-independent and Hsf1p-dependent manner in Saccharomyces cerevisiae. Genetics 169:1203–121

    Article  PubMed  CAS  Google Scholar 

  • Fernandes PM, Domitrovic T, Kao CM, Kurtenbach E (2004) Genomic expression pattern in Saccharomyces cerevisiae cells in response to high hydrostatic pressure. FEBS Lett 556:153–160

    Article  PubMed  CAS  Google Scholar 

  • Glover JR, Lindquist S (1998) Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94:73–82

    Article  PubMed  CAS  Google Scholar 

  • Gottesman S, Squires C, Pichersky E, Carrington M, Hobbs M, Mattick JS, Dalrymple B, Kuramitsu H, Shiroza T, Foster T et al. (1990) Conservation of the regulatory subunit for the Clp ATP-dependent protease in prokaryotes and eukaryotes. Proc Natl Acad Sci USA 87:3513–3517

    Article  PubMed  CAS  Google Scholar 

  • Graille M, Quevillon-Cheruel S, Leulliot N, Zhou CZ, de la Sierra Gallay IL, Jacquamet L, Ferrer JL, Liger D, Poupon A, Janin J, van Tilbeurgh H (2004) Crystal structure of the YDR533c S. cerevisiae protein, a class II member of the Hsp31 family. Structure 12:839–847

    Article  PubMed  CAS  Google Scholar 

  • Haslbeck M, Braun N, Stromer T, Richter B, Model N, Weinkauf S, Buchner J (2004) Hsp42 is the general small heat shock protein in the cytosol of Saccharomyces cerevisiae. EMBO J 23:638–649

    Article  PubMed  CAS  Google Scholar 

  • Iwahashi H, Kaul SC, Obuchi K, Komatsu Y (1991) Induction of barotolerance by heat shock treatment in yeast. FEMS Microbiol Lett 64:325–328

    Article  PubMed  CAS  Google Scholar 

  • Iwahashi H, Obuchi K, Fujii S, Komatsu Y (1997) Effect of temperature on the role of Hsp104 and trehalose in barotolerance of Saccharomyces cerevisiae. FEBS Lett 416:1–5

    Article  PubMed  CAS  Google Scholar 

  • Iwahashi H, Shimizu H, Odani M, Komatsu Y (2003) Piezophysiology of genome wide gene expression levels in the yeast Saccharomyces cerevisiae. Extremophiles 7:291–298. Erratum in: Extremophiles (2003) 7:433

    Google Scholar 

  • Iwahashi H, Odani M, Ishidou E, Kitagawa E (2005) Adaptation of Saccharomyces cerevisiae to high hydrostatic pressure causing growth inhibition. FEBS Lett 579:2847–2852

    Article  PubMed  CAS  Google Scholar 

  • Kohrer K, Domdey H (1991) Preparation of high molecular weight RNA. In: Guthrie C, Fink G (eds) Guide to yeast genetics and molecular biology. Academic, San Diego, pp 398–495

    Chapter  Google Scholar 

  • Leonhardt SA, Fearson K, Danese PN, Mason TL (1993) HSP78 encodes a yeast mitochondrial heat shock protein in the Clp family of ATP-dependent proteases. Mol Cell Biol 13:6304–6313

    PubMed  CAS  Google Scholar 

  • Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22:631–677

    Article  PubMed  CAS  Google Scholar 

  • Louvion JF, Abbas-Terki T, Picard D (1998) Hsp90 is required for pheromone signaling in yeast. Mol Biol Cell 9:3071–3083

    PubMed  CAS  Google Scholar 

  • Mager WH, De Kruijff AJ (1995) Stress-induced transcriptional activation. Microbiol Rev 59:506–531

    PubMed  CAS  Google Scholar 

  • Malki A, Caldas T, Abdallah J, Kern R, Eckey V, Kim SJ, Cha SS, Mori H, Richarme G (2005) Peptidase activity of the Escherichia coli Hsp31 chaperone. J Biol Chem 280:14420–14426

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto R, Akama K, Rakwal R, Iwahashi H (2005) The stress response against denatured proteins in the deletion of cytosolic chaperones SSA1/2 is different from heat-shock response in Saccharomyces cerevisiae. BMC Genomics 6:141

    Article  PubMed  CAS  Google Scholar 

  • Miura T, Abe F (2004) Multiple ubiquitin-specific protease genes are involved in degradation of yeast tryptophan permease Tat2 at high pressure. FEMS Microbiol Lett 239:171–179

    Article  PubMed  CAS  Google Scholar 

  • Moriya H, Isono K (1999) Analysis of genetic interactions between DHH1, SSD1 and ELM1 indicates their involvement in cellular morphology determination in Saccharomyces cerevisiae. Yeast 15:481–496

    Article  PubMed  CAS  Google Scholar 

  • Nagayama A, Kato C, Abe F (2004) The C-terminal mutation stabilizes the yeast tryptophan permease Tat2 under high-pressure and low-temperature conditions. Extremophiles 8:143–149

    Article  PubMed  CAS  Google Scholar 

  • Piper PW (1995) The heat shock and ethanol stress responses of yeast exhibit extensive similarity and functional overlap. FEMS Microbiol Lett 134:121–127

    Article  PubMed  CAS  Google Scholar 

  • Piper PW, Ortiz-Calderon C, Holyoak C, Coote P, Cole M (1997) Hsp30, the integral plasma membrane heat shock protein of Saccharomyces cerevisiae, is a stress-inducible regulator of plasma membrane H(+)-ATPase. Cell Stress Chaperones 2:12–24

    Article  PubMed  CAS  Google Scholar 

  • Seymour IJ, Piper PW (1999) Stress induction of HSP30, the plasma membrane heat shock protein gene of Saccharomyces cerevisiae, appears not to use known stress-regulated transcription factors. Microbiology 145:231–239

    Article  PubMed  CAS  Google Scholar 

  • Tsuchiya E, Matsuzaki G, Kurano K, Fukuchi T, Tsukao A, Miyakawa T (1996) The Saccharomyces cerevisiae SSD1 gene is involved in the tolerance to high concentration of Ca2+ with the participation of HST1/NRC1/BFR1. Gene 176:35–38

    Article  PubMed  CAS  Google Scholar 

  • Uesono Y, Fujita A, Toh-e A, Kikuchi Y (1994) The MCS1/SSD1/SRK1/SSL1 gene is involved in stable maintenance of the chromosome in yeast. Gene 143:135–138

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported in part by a Grant-in-Aid for Young Scientists (B-15780065) from the Japan Society for the Promotion of Science to F. Abe.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumiyoshi Abe.

Additional information

Communicated by K. Horikoshi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miura, T., Minegishi, H., Usami, R. et al. Systematic analysis of HSP gene expression and effects on cell growth and survival at high hydrostatic pressure in Saccharomyces cerevisiae . Extremophiles 10, 279–284 (2006). https://doi.org/10.1007/s00792-005-0496-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-005-0496-6

Keywords

Navigation