Skip to main content

Advertisement

Log in

Optical clearing agents based on metallic and dielectric nanoparticles for caries diagnostic by optical coherence tomography

  • Research
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objective

This study aimed to assess the effect of titanium dioxide (TiO2) and silver (Ag) nanoparticles dispersed in glycerol or water, serving as optical clearing agents nanocolloids (OCAs-NC), for improving optical coherence tomography (OCT) images and highlighting incipient lesions in ex vivo human teeth.

Materials and methods

Twelve human teeth with incipient lesions were divided into seven groups according to the OCA-NC; they were subjected to G1 (air), G2 (glycerol), G3 (TiO2 0.1%), G4 (TiO2 0.01%), G5 (TiO2 0.001%), G6 (AgNO3 10%), and G7 (AgNO3 100%). The OCA-NC was applied to the occlusal surface, and two-dimensional images of the specimens were analyzed using OCT (930 nm central wavelength; 100 nm bandwidth; 5 mW output power; axial resolution of 7/5.3 μm in water and air, respectively; lateral resolution of 8 μm; and light penetration depth of 1.6 mm inside the sample).

Results

The findings demonstrated that the utilization of OCAs-NC containing metallic or dielectric nanoparticles (AgNO3 and TiO2) led to improved differentiation between sound and demineralized enamel on occlusal surfaces. Additionally, it enhanced the depth of image penetration when analyzing this hard tissue with OCT.

Clinical relevance

In the current context of minimally invasive dentistry, the use of OCAs-NC in conjunction with OCT can provide clinicians with early diagnosis, allowing for the determination of less/more invasive therapies and consequently halting the disease before cavitation of dental tissues occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data underlying the results are available as part of the article, and no additional source data is applicable.

References

  1. Machiulskiene V et al (2020) Terminology of dental caries and dental caries management: consensus report of a workshop organized by ORCA and Cariology Research Group of IADR. Caries Res 54(1):7–14. https://doi.org/10.1159/000503309

    Article  PubMed  Google Scholar 

  2. Drancourt N et al (2019) Carious lesion activity assessment in clinical practice: a systematic review. Clin Oral Invest 23:1513–1524. https://doi.org/10.1007/s00784-019-02839-7

    Article  Google Scholar 

  3. Pitts NB, Twetman S, Fisher J, Marsh PD (2021) Understanding dental caries as a non-communicable disease. Br Dent J 231(12):749–753. https://doi.org/10.1038/s41415-021-3775-4

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kapor S et al (2021) Systematic review and meta-analysis of diagnostic methods for occlusal surface caries. Clin Oral Invest 25(8):4801–4815. https://doi.org/10.1007/s00784-021-04024-1

    Article  MathSciNet  Google Scholar 

  5. Schwendicke F et al (2019) When to intervene in the caries process? An expert Delphi consensus statement. Clin Oral Invest 23:3691–3703. https://doi.org/10.1007/s00784-019-03058-w

    Article  Google Scholar 

  6. Şen S et al (2020) Demineralization detection in orthodontics using an ophthalmic optical coherence tomography device equipped with a multicolor fluorescence module. Clin Oral Invest 24:2579–2590. https://doi.org/10.1007/s00784-019-03116-3

    Article  Google Scholar 

  7. Gomes ASL, Valente D (2023) Optical coherence tomography: from basics to general applications. In: Optical coherence tomography in dentistry: scientific developments to clinical applications. (1st ed.). CRC Press. https://doi.org/10.1201/9781351104562

  8. Shimada Y et al (2020) Evaluation of dental caries, tooth crack, and age-related changes in tooth structure using optical coherence tomography. Jpn Dent Sci Rev 56(1):109–118. https://doi.org/10.1016/j.jdsr.2020.08.001

    Article  PubMed  PubMed Central  Google Scholar 

  9. Monteiro GQ et al (2011) Marginal analysis of resin composite restorative systems using optical coherence tomography. Dent Mater 27(12):e213–e223. https://doi.org/10.1016/j.dental.2011.08.400

    Article  PubMed  CAS  Google Scholar 

  10. Mota CC et al (2013) Optical coherence tomography as an auxiliary tool for the screening of radiation-related caries. Photomed Laser Surg 31(7):301–306. https://doi.org/10.1089/pho.2012.3415

    Article  CAS  Google Scholar 

  11. Kitasako Y et al (2019) Remineralization capacity of carious and non-carious white spot lesions: clinical evaluation using ICDAS and SS-OCT. Clin Oral Inv 23(2):863–872. https://doi.org/10.1007/s00784-018-2503-1

    Article  Google Scholar 

  12. Bolukbasi S et al (2020) Retinal structural changes in patients receiving tamoxifen therapy by spectral-domain optical coherence tomography. Cutan Ocul Toxicol 39(2):115–121. https://doi.org/10.1080/15569527.2020.1734816

    Article  PubMed  CAS  Google Scholar 

  13. Gune S et al (2020) Spectral-domain OCT-based prevalence and progression of macular atrophy in the HARBOR study for neovascular age-related macular degeneration. Ophthalmology 127(4):523–532. https://doi.org/10.1016/j.ophtha.2019.09.030

    Article  PubMed  Google Scholar 

  14. Fernandes LO et al (2019) Optical coherence tomography follow-up of patients treated from periodontal disease. J Biophotonics 12(2):e201800209. https://doi.org/10.1002/jbio.201800209

    Article  PubMed  CAS  Google Scholar 

  15. Merle CL et al (2022) Clinical and OCT assessment of application modes of a universal adhesive in a 12-month RCT. J Dent 119:104068. https://doi.org/10.1016/j.jdent.2022.104068

    Article  PubMed  Google Scholar 

  16. Das A et al (2022) Exploiting nanomaterials for optical coherence tomography and photoacoustic imaging in nanodentistry. Nanomaterials (Basel, Switzerland) 12(3):506. https://doi.org/10.3390/nano12030506

    Article  PubMed  CAS  Google Scholar 

  17. Gomes AS, Zezell DM, Mota CC, Girkin, JM (Eds.) (2023) Optical coherence tomography in Dentistry: scientific developments to clinical applications (1st ed.). CRC Press. https://doi.org/10.1201/9781351104562

  18. Zezel DM, Ana PA (2024) OCT in cariology: in vitro and in vivo studies. In: Optical coherence tomography in dentistry: scientific developments to clinical applications. (1st ed.). CRC Press. https://doi.org/10.1201/9781351104562

  19. Ţogoe MM et al (2021) Endodontic fillings evaluated using en face OCT, microCT and SEM. Rom J Morphol Embryol 62(3):793–800. https://doi.org/10.47162/RJME.62.3.17

    Article  PubMed  Google Scholar 

  20. Kim Y et al (2021) Non-invasive optical coherence tomography data-based quantitative algorithm for the assessment of residual adhesive on bracket-removed dental surface. Sensors (Basel) 21(14):4670. https://doi.org/10.3390/s21144670

    Article  PubMed  ADS  CAS  Google Scholar 

  21. Matheus TC et al (2010) Fracture process characterization of fiber-reinforced dental composites evaluated by optical coherence tomography, SEM and optical microscopy. Braz Dent J 21(5):420–427. https://doi.org/10.1590/s0103-64402010000500008

    Article  PubMed  Google Scholar 

  22. Kim DH, Kim SW, Hwang SH (2023) Efficacy of optical coherence tomography in the diagnosing of oral cancerous lesion: systematic review and meta-analysis. Head Neck 45(2):473–481. https://doi.org/10.1002/hed.27232

    Article  PubMed  Google Scholar 

  23. Kang H, Darling CL, Fried D (2016) Enhancement of OCT images with vinyl polysiloxane (VPS). Proc SPIE Int Soc Opt Eng 9692:96920T. https://doi.org/10.1117/12.2218649

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  24. Bykov A et al (2016) Imaging of subchondral bone by optical coherence tomography upon optical clearing of articular cartilage. J Biophotonics 9(3):270–275. https://doi.org/10.1002/jbio.201500130

    Article  PubMed  Google Scholar 

  25. Liang Y, Yuan W, Mavadia-Shukla J, Li X (2016) Optical clearing for luminal organ imaging with ultrahigh-resolution optical coherence tomography. J Biomed Opt 21(8):081211. https://doi.org/10.1117/1.JBO.21.8.081211

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ali S et al (2021) Optical coherence tomography’s current clinical medical and dental applications: a review. F1000 Research 10:310. https://doi.org/10.12688/f1000research.52031.1

    Article  PubMed  PubMed Central  Google Scholar 

  27. Larin K et al (2011) Optical clearing for OCT image enhancement and in-depth monitoring of molecular diffusion. IEEE J Sel Top Quantum Electron 18(3):1244–1259

    Article  ADS  Google Scholar 

  28. Yu T et al (2018) Optical clearing for multiscale biological tissues. Journal of Biophotonics 11(2):https://doi.org/10.1002/jbio.201700187.

  29. Yin X et al (2019) Spatial distribution of motor endplates and its adaptive change in skeletal muscle. Theranostics 9(3):734–746. https://doi.org/10.7150/thno.28729

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Zhang BW et al (2019) Multidither coherent optical adaptive technique for deep tissue two-photon microscopy. J Innov Opt Health Sci 12(04):1942003. https://doi.org/10.1142/S1793545819420033

    Article  CAS  Google Scholar 

  31. Zaytsev SM, Amouroux M, Tuchin VV, Genina EA, Blondel W (2023) In vivo skin optical clearing efficacy quantification of clinically compatible agents using line-field confocal optical coherence tomography. J Biomed Opt 28(5):055002. https://doi.org/10.1117/1.JBO.28.5.055002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Mota CC, Fernandes LO, Cimoes R, Gomes AS (2015) Non-invasive periodontal probing through Fourier-domain optical coherence tomography. J Periodontol 86(9):1087–1094

    Article  PubMed  CAS  Google Scholar 

  33. Foros P et al (2021) Detection methods for early caries diagnosis: a systematic review and meta-analysis. Caries Res 55(4):247–259. https://doi.org/10.1159/000516084

    Article  PubMed  ADS  Google Scholar 

  34. Sahyoun CC et al (2020) An experimental review of optical coherence tomography systems for noninvasive assessment of hard dental tissues. Caries Res 54(1):43–54. https://doi.org/10.1159/000502375

    Article  PubMed  Google Scholar 

  35. Nguyen TT, Miller A, Orellana MF (2011) Characterization of the porosity of human dental enamel and shear bond strength in vitro after variable etch times: initial findings using the BET method. Angle Orthod 81(4):707–715. https://doi.org/10.2319/083010-506.1

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kang H, Darling CL, Fried D (2014) Enhancing the detection of hidden occlusal caries lesions with OCT using high index liquids. Proc SPIE Int Soc Opt Eng 8929:89290O. https://doi.org/10.1117/12.2045681

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  37. Butt MA et al (2019) Investigating the optical properties of a laser induced 3D self-assembled carbon-metal hybrid structure. Small 15(18):e1900512. https://doi.org/10.1002/smll.201900512

    Article  PubMed  CAS  Google Scholar 

  38. Kupriianov AS et al (2023) Trapped mode control in metasurfaces composed of particles with the form birefringence property. Opt Express 31(4):6996–7011. https://doi.org/10.1364/OE.483569

    Article  PubMed  ADS  CAS  Google Scholar 

Download references

Funding

The work was supported by the CAPES (Coordination for the Improvement of Higher Education Personnel) for scholarship for VSMC, ELM, and JMM; the INCT-INFO (National Institutes of Science and Technology, Institute of Photonics) process 465.763/2014–6, supported by CNPq/MCTI (Brazilian National Council for Scientific and Technological Development and Ministry of Science, Technology and Innovation); and the PRONEX program (Center of Excellence on Biophotonics and Nanophotonics), process APQ-0504–1.05/14, sponsored by FACEPE/CNPq (Foundation for Science and Technology of Pernambuco State and Brazilian National Council for Scientific and Technological Development).

Author information

Authors and Affiliations

Authors

Contributions

VSMC conducted the research in its entirety; ELM prepared the manuscript and submitted it to the journal; CCBOM and EJS collaborated in conducting the experiments; AFS synthesized the nanoparticles for the experiments; NSD, JMM, and SISR edited the figures and tables; CLP translated the manuscript into English; ASLG co-supervised the research and revised the manuscript. MEMMG co-supervised the research.

Corresponding author

Correspondence to Eloiza Leonardo de Melo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

All procedures performed in this study were conducted in accordance with the ethical standards of the local. Furthermore, this study followed all the guidelines outlined in the Helsinki Declaration.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carneiro, V.S.M., de Melo, E.L., de Oliveira Mota, C.C.B. et al. Optical clearing agents based on metallic and dielectric nanoparticles for caries diagnostic by optical coherence tomography. Clin Oral Invest 28, 72 (2024). https://doi.org/10.1007/s00784-023-05473-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00784-023-05473-6

Keywords

Navigation