Skip to main content

Advertisement

Log in

Females with painful temporomandibular disorders present higher intracortical facilitation relative to pain-free controls

  • Brief Report
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

This study aimed to investigate cortical excitability differences in the primary motor cortex (M1) hand representation between individuals with temporomandibular disorders (TMD) and healthy controls. We assessed resting motor thresholds, motor-evoked potentials (MEPs), intracortical inhibition, and intracortical facilitation and explored potential associations with clinical and psychosocial characteristics in the TMD group.

Materials and methods

We recruited 36 female participants with TMD and 17 pain-free controls. Transcranial magnetic stimulation (TMS) was used to assess M1 cortical excitability. Correlations between clinical and psychosocial factors and cortical excitability measures were also evaluated.

Results

Patients with TMD showed significantly higher intracortical facilitation at 12 ms (z = 1.98, p = 0.048) and 15 ms (z = 2.65, p = 0.008) when compared to controls. Correlations revealed associations between intracortical facilitation and pain interference, sleep quality, depressive symptoms, and pain catastrophizing in the TMD group.

Conclusions

Females with TMD exhibit heightened motor cortex intracortical facilitation in the hand representation, potentially indicating altered cortical excitability beyond the motor face area. This suggests a role for cortical excitability in TMD pathophysiology, influenced by psychosocial factors.

Clinical relevance

Understanding cortical excitability in TMD may inform targeted interventions. Psychosocial variables may play a role in cortical excitability, emphasizing the multidimensional nature of TMD-related pain. Further research is needed to confirm and expand upon these findings, with potential implications for the management of TMD and related pain conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data of this study will be available upon reasonable request.

References

  1. Schiffman E, Ohrbach R, Truelove E, Look J, Anderson G, Goulet JP et al (2014) Diagnostic criteria for temporomandibular disorders (DC/TMD) for clinical and research applications: recommendations of the International RDC/TMD Consortium Network* and Orofacial Pain Special Interest Groupdagger. J Oral Facial Pain Headache 28(1):6–27

    PubMed  Google Scholar 

  2. Kapos FP, Exposto FG, Oyarzo JF, Durham J (2020) Temporomandibular disorders: a review of current concepts in aetiology, diagnosis and management. Oral Surg 13(4):321–334

    PubMed  PubMed Central  Google Scholar 

  3. Chang WJ, O’Connell NE, Beckenkamp PR, Alhassani G, Liston MB, Schabrun SM (2018) Altered primary motor cortex structure, organization, and function in chronic pain: a systematic review and meta-analysis. J Pain 19(4):341–359

    PubMed  Google Scholar 

  4. Granovsky Y, Sprecher E, Sinai A (2019) Motor corticospinal excitability: a novel facet of pain modulation? Pain reports 4(2):e725

    PubMed  PubMed Central  Google Scholar 

  5. Wassermann EM (1998) Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5–7, 1996. Electroencephalogr Clin Neurophysiol 108(1):1–16

    PubMed  CAS  Google Scholar 

  6. Nakamura H, Kitagawa H, Kawaguchi Y, Tsuji H (1997) Intracortical facilitation and inhibition after transcranial magnetic stimulation in conscious humans. J Physiol 498(Pt 3):817–823

  7. Parker RS, Lewis GN, Rice DA, McNair PJ (2016) Is motor cortical excitability altered in people with chronic pain? A systematic review and meta-analysis. Brain Stimul 9(4):488–500

    PubMed  Google Scholar 

  8. Turk U, Rosler KM, Mathis J, Mullbacher W, Hess CW (1994) Assessment of motor pathways to masticatory muscles: an examination technique using electrical and magnetic stimulation. Muscle Nerve 17(11):1271–1277

    PubMed  CAS  Google Scholar 

  9. Vucic S, Stanley Chen KH, Kiernan MC, Hallett M, Benninger DH, Di Lazzaro V et al (2023) Clinical diagnostic utility of transcranial magnetic stimulation in neurological disorders. Updated report of an IFCN committee. Clin Neurophysiol 150:131–175

  10. Galhardoni R, Ciampi de Andrade D, Puerta MY, Brunoni AR, Varotto BL, de Siqueira JT et al (2019) Altered cortical excitability in persistent idiopathic facial pain. Cephalalgia 39(2):219–228

  11. Ginatempo F, Loi N, Manca A, Rothwell JC, Deriu F (2022) Is it possible to compare inhibitory and excitatory intracortical circuits in face and hand primary motor cortex? J Physiol 600(15):3567–3583

    PubMed  CAS  Google Scholar 

  12. Mhalla A, de Andrade DC, Baudic S, Perrot S, Bouhassira D (2010) Alteration of cortical excitability in patients with fibromyalgia. Pain 149(3):495–500

    PubMed  Google Scholar 

  13. Siniatchkin M, Kroner-Herwig B, Kocabiyik E, Rothenberger A (2007) Intracortical inhibition and facilitation in migraine–a transcranial magnetic stimulation study. Headache 47(3):364–370

    PubMed  Google Scholar 

  14. Moana-Filho EJ, Herrero BA (2019) Endogenous pain modulation in chronic temporomandibular disorders: derivation of pain modulation profiles and assessment of its relationship with clinical characteristics. J Oral Rehabil 46(3):219–232

    PubMed  Google Scholar 

  15. Raphael KG, Janal MN, Sirois DA, Dubrovsky B, Klausner JJ, Krieger AC et al (2015) Validity of self-reported sleep bruxism among myofascial temporomandibular disorder patients and controls. J Oral Rehabil 42(10):751–758

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Mun CJ, Weaver KR, Hunt CA, Owens MA, Phillips J, Lerman SF et al (2022) Pain expectancy and positive affect mediate the day-to-day association between objectively measured sleep and pain severity among women with temporomandibular disorder. J Pain 23(4):669–679

    PubMed  CAS  Google Scholar 

  17. Jodoin M, Rouleau DM, Bellemare A, Provost C, Larson-Dupuis C, Sandman E et al (2020) Moderate to severe acute pain disturbs motor cortex intracortical inhibition and facilitation in orthopedic trauma patients: a TMS study. PLoS ONE 15(3):e0226452

    PubMed  PubMed Central  CAS  Google Scholar 

  18. Rossi S, Hallett M, Rossini PM, Pascual-Leone A (2011) Screening questionnaire before TMS: an update. Clin Neurophysiol 122(8):1686

    PubMed  Google Scholar 

  19. Keel JC, Smith MJ, Wassermann EM (2001) A safety screening questionnaire for transcranial magnetic stimulation. Clin Neurophysiol 112(4):720

    PubMed  CAS  Google Scholar 

  20. Von Korff M, DeBar LL, Krebs EE, Kerns RD, Deyo RA, Keefe FJ (2020) Graded chronic pain scale revised: mild, bothersome, and high-impact chronic pain. Pain 161(3):651–661

    Google Scholar 

  21. Gracely RH, McGrath P, Dubner R (1978) Ratio scales of sensory and affective verbal pain descriptors. Pain 5(1):5–18

    PubMed  Google Scholar 

  22. Tan G, Jensen MP, Thornby JI, Shanti BF (2004) Validation of the Brief Pain Inventory for chronic nonmalignant pain. J Pain 5(2):133–137

    PubMed  Google Scholar 

  23. Hauser W, Jung E, Erbsloh-Moller B, Gesmann M, Kuhn-Becker H, Petermann F et al (2012) Validation of the Fibromyalgia Survey Questionnaire within a cross-sectional survey. PLoS ONE 7(5):e37504

    PubMed  PubMed Central  ADS  Google Scholar 

  24. Moana-Filho EJ, Herrero Babiloni A, Nisley A (2019) Endogenous pain modulation assessed with offset analgesia is not impaired in chronic temporomandibular disorder pain patients. J Oral Rehabil 46(11):1009–1022

    PubMed  CAS  Google Scholar 

  25. Miller VE, Poole C, Golightly Y, Barrett D, Chen DG, Ohrbach R et al (2019) Characteristics associated with high-impact pain in people with temporomandibular disorder: a cross-sectional study. J Pain 20(3):288–300

    PubMed  Google Scholar 

  26. Ohrbach R, Larsson P, List T (2008) The jaw functional limitation scale: development, reliability, and validity of 8-item and 20-item versions. J Orofac Pain 22(3):219–230

    PubMed  Google Scholar 

  27. Kroenke K, Spitzer RL, Williams JB (2001) The PHQ-9: validity of a brief depression severity measure. J Gen Intern Med 16(9):606–613

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Spitzer RL, Kroenke K, Williams JB, Lowe B (2006) A brief measure for assessing generalized anxiety disorder: the GAD-7. Arch Intern Med 166(10):1092–1097

    PubMed  Google Scholar 

  29. Kroenke K, Spitzer RL, Williams JB (2002) The PHQ-15: validity of a new measure for evaluating the severity of somatic symptoms. Psychosom Med 64(2):258–266

    PubMed  Google Scholar 

  30. Cohen S, Kamarck T, Mermelstein R (1983) A global measure of perceived stress. J Health Soc Behav 24(4):385–396

    PubMed  CAS  Google Scholar 

  31. Buysse DJ, Reynolds CF 3rd, Monk TH, Berman SR, Kupfer DJ (1989) The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res 28(2):193–213

    PubMed  CAS  Google Scholar 

  32. Sullivan MJL, Bishop SR, Pivik J (1995) The Pain Catastrophizing Scale: development and validation. Psychol Assess 7(4):524–532

    Google Scholar 

  33. Watson D, Clark LA, Tellegen A (1988) Development and validation of brief measures of positive and negative affect: the PANAS scales. J Pers Soc Psychol 54(6):1063–1070

    PubMed  CAS  Google Scholar 

  34. Lefaucheur JP, Aleman A, Baeken C, Benninger DH, Brunelin J, Di Lazzaro V, Filipović SR, Grefkes C, Hasan A, Hummel FC, Jääskeläinen SK, Langguth B, Leocani L, Londero A, Nardone R, Nguyen JP, Nyffeler T, Oliveira-Maia AJ, Oliviero A, Padberg F, Palm U, Paulus W, Poulet E, Quartarone A, Rachid F, Rektorová I, Rossi S, Sahlsten H, Schecklmann M, Szekely D, Ziemann U (2020) Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): an update (2014–2018). Clin Neurophysiol 131(2):474–528. https://doi.org/10.1016/j.clinph.2019.11.002

  35. Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R et al (2015) Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin Neurophysiol 126(6):1071–1107

  36. Chen R, Classen J, Gerloff C, Celnik P, Wassermann EM, Hallett M et al (1997) Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology 48(5):1398–1403

    PubMed  CAS  Google Scholar 

  37. Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert A et al (1993) Corticocortical inhibition in human motor cortex. J Physiol 471:501–519

    PubMed  PubMed Central  CAS  Google Scholar 

  38. Ziemann U, Rothwell JC, Ridding MC (1996) Interaction between intracortical inhibition and facilitation in human motor cortex. J Physiol 496(Pt 3):873–881

    PubMed  PubMed Central  CAS  Google Scholar 

  39. Ziemann U (2003) Pharmacology of TMS. Suppl Clin Neurophysiol 56:226–231

    PubMed  Google Scholar 

  40. Paulus W, Classen J, Cohen LG, Large CH, Di Lazzaro V, Nitsche M et al (2008) State of the art: pharmacologic effects on cortical excitability measures tested by transcranial magnetic stimulation. Brain Stimul 1(3):151–163

    PubMed  Google Scholar 

  41. Reis J, Swayne OB, Vandermeeren Y, Camus M, Dimyan MA, Harris-Love M et al (2008) Contribution of transcranial magnetic stimulation to the understanding of cortical mechanisms involved in motor control. J Physiol 586(2):325–351

    PubMed  CAS  Google Scholar 

  42. Wassermann EM, Greenberg BD, Nguyen MB, Murphy DL (2001) Motor cortex excitability correlates with an anxiety-related personality trait. Biol Psychiat 50(5):377–382

    PubMed  CAS  Google Scholar 

  43. Concerto C, Lanza G, Cantone M, Pennisi M, Giordano D, Spampinato C et al (2013) Different patterns of cortical excitability in major depression and vascular depression: a transcranial magnetic stimulation study. BMC Psychiatry 13:300

    PubMed  PubMed Central  Google Scholar 

  44. Volz MS, Medeiros LF, TarragoMda G, Vidor LP, Dall’Agnol L, Deitos A et al (2013) The relationship between cortical excitability and pain catastrophizing in myofascial pain. J Pain 14(10):1140–1147

  45. Larsen DB, Graven-Nielsen T, Boudreau SA (2019) Pain-induced reduction in corticomotor excitability is counteracted by combined action-observation and motor imagery. J Pain 20(11):1307–1316

    PubMed  Google Scholar 

  46. Civardi C, Boccagni C, Vicentini R, Bolamperti L, Tarletti R, Varrasi C et al (2001) Cortical excitability and sleep deprivation: a transcranial magnetic stimulation study. J Neurol Neurosurg Psychiatry 71(6):809–812

    PubMed  PubMed Central  CAS  Google Scholar 

  47. Mykland MS, Uglem M, Stovner LJ, Brenner E, Snoen MS, Gravdahl GB et al (2023) Insufficient sleep may alter cortical excitability near the migraine attack: a blinded TMS crossover study. Cephalalgia 43(3):3331024221148391

    PubMed  Google Scholar 

  48. Thibaut A, Zeng D, Caumo W, Liu J, Fregni F (2017) Corticospinal excitability as a biomarker of myofascial pain syndrome. Pain reports 2(3):e594

    PubMed  PubMed Central  Google Scholar 

  49. Castillo Saavedra L, Mendonca M, Fregni F (2014) Role of the primary motor cortex in the maintenance and treatment of pain in fibromyalgia. Med Hypotheses 83(3):332–336

    PubMed  Google Scholar 

  50. Henssen D, Giesen E, van der Heiden M, Kerperien M, Lange S, van Cappellen van Walsum AM et al (2020) A systematic review of the proposed mechanisms underpinning pain relief by primary motor cortex stimulation in animals. Neurosci Lett 719:134489

  51. DosSantos MF, Ferreira N, Toback RL, Carvalho AC, DaSilva AF (2016) Potential mechanisms supporting the value of motor cortex stimulation to treat chronic pain syndromes. Front Neurosci 10:18

    PubMed  PubMed Central  Google Scholar 

  52. Woolf CJ (2014) What to call the amplification of nociceptive signals in the central nervous system that contribute to widespread pain? Pain 155(10):1911–1912

    PubMed  Google Scholar 

  53. Woolf CJ (2011) Central sensitization: implications for the diagnosis and treatment of pain. Pain 152(3 Suppl):S2-15

    PubMed  Google Scholar 

  54. Radhu N, de Jesus DR, Ravindran LN, Zanjani A, Fitzgerald PB, Daskalakis ZJ (2013) A meta-analysis of cortical inhibition and excitability using transcranial magnetic stimulation in psychiatric disorders. Clin Neurophysiol 124(7):1309–1320

    PubMed  Google Scholar 

  55. Pacheco-Barrios K, Lima D, Pimenta D, Slawka E, Navarro-Flores A, Parente J et al (2022) Motor cortex inhibition as a fibromyalgia biomarker: a meta-analysis of transcranial magnetic stimulation studies. Brain Netw Modul 1(2):88–101

    PubMed  PubMed Central  Google Scholar 

  56. Maarrawi J, Peyron R, Mertens P, Costes N, Magnin M, Sindou M et al (2013) Brain opioid receptor density predicts motor cortex stimulation efficacy for chronic pain. Pain 154(11):2563–2568

    PubMed  CAS  Google Scholar 

  57. Pagano RL, Fonoff ET, Dale CS, Ballester G, Teixeira MJ, Britto LRG (2012) Motor cortex stimulation inhibits thalamic sensory neurons and enhances activity of PAG neurons: possible pathways for antinociception. Pain 153(12):2359–2369

    PubMed  CAS  Google Scholar 

  58. Hermans L, Levin O, Maes C, van Ruitenbeek P, Heise KF, Edden RAE et al (2018) GABA levels and measures of intracortical and interhemispheric excitability in healthy young and older adults: an MRS-TMS study. Neurobiol Aging 65:168–177

    PubMed  CAS  Google Scholar 

  59. Dyke K, Pepes SE, Chen C, Kim S, Sigurdsson HP, Draper A et al (2017) Comparing GABA-dependent physiological measures of inhibition with proton magnetic resonance spectroscopy measurement of GABA using ultra-high-field MRI. Neuroimage 152:360–370

    PubMed  CAS  Google Scholar 

  60. Dube JA, Mercier C (2011) Effect of pain and pain expectation on primary motor cortex excitability. Clin Neurophysiol 122(11):2318–2323

    PubMed  Google Scholar 

  61. Svensson P, Miles TS, McKay D, Ridding MC (2003) Suppression of motor evoked potentials in a hand muscle following prolonged painful stimulation. Eur J Pain 7(1):55–62

    PubMed  Google Scholar 

  62. Chowdhury NS, Chiang AKI, Millard SK, Skippen P, Chang WJ, Seminowicz DA, Schabrun SM (2023) Combined transcranial magnetic stimulation and electroencephalography reveals alterations in cortical excitability during pain. Elife 12:RP88567. https://doi.org/10.7554/eLife.88567

  63. De Martino E, Casali A, Casarotto S, Hassan G, Rosanova M, Graven-Nielsen T, Ciampi de Andrade D (2023) Acute pain drives different effects on local and global cortical excitability in motor and prefrontal areas: insights into interregional and interpersonal differences in pain processing. Cerebral Cortex 33(18):9986–9996. https://doi.org/10.1093/cercor/bhad259

  64. De Gennaro L, Bertini M, Ferrara M, Curcio G, Cristiani R, Romei V et al (2004) Intracortical inhibition and facilitation upon awakening from different sleep stages: a transcranial magnetic stimulation study. Eur J Neurosci 19(11):3099–3104

    PubMed  Google Scholar 

  65. Salas RE, Galea JM, Gamaldo AA, Gamaldo CE, Allen RP, Smith MT et al (2014) Increased use-dependent plasticity in chronic insomnia. Sleep 37(3):535–544

    PubMed  PubMed Central  Google Scholar 

  66. Kinjo M, Wada M, Nakajima S, Tsugawa S, Nakahara T, Blumberger DM et al (2021) Transcranial magnetic stimulation neurophysiology of patients with major depressive disorder: a systematic review and meta-analysis. Psychol Med 51(1):1–10

    PubMed  Google Scholar 

  67. Vidor LP, Torres IL, Medeiros LF, Dussan-Sarria JA, Dall’agnol L, Deitos A et al (2014) Association of anxiety with intracortical inhibition and descending pain modulation in chronic myofascial pain syndrome. BMC Neurosci 15:42

  68. Cueva AS, Galhardoni R, Cury RG, Parravano DC, Correa G, Araujo H et al (2016) Normative data of cortical excitability measurements obtained by transcranial magnetic stimulation in healthy subjects. Neurophysiol Clin = Clin Neurophysiol 46(1):43–51

  69. Herrero Babiloni A, Exposto FG, Peck CM, Lindgren BR, Martel MO, Lenglet C et al (2022) Temporomandibular disorders cases with high-impact pain are more likely to experience short-term pain fluctuations. Sci Rep 12(1):1657

    PubMed  PubMed Central  ADS  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the work of Dr Sehrish Saghir in the development of Fig. 1.

Funding

GJL received research support from a Canadian Institutes of Health Research Canada Research Chair. LDB received research support from Foundation Caroline Durand Research Chair in Acute Traumatology of Université de Montréal. AHB was funded by a Vanier Scholarship and the CPS.

Author information

Authors and Affiliations

Authors

Contributions

AHB participated in the conception of the idea and wrote the main manuscript, text, and tables. MJ participated in the conception of the idea and reviewed the manuscript. CP, CCP, BDK, and AAD participated in data collection, and data curation. GL and LDB supervised the conception of the project and the writing of the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Alberto Herrero Babiloni.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

The study procedures were approved by The Human Subjects Research Ethics Board of Hôpital du Sacré-Cœur de Montréal. Written informed consent was obtained from every participant.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herrero Babiloni, A., Jodoin, M., Provost, C. et al. Females with painful temporomandibular disorders present higher intracortical facilitation relative to pain-free controls. Clin Oral Invest 28, 12 (2024). https://doi.org/10.1007/s00784-023-05412-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00784-023-05412-5

Keywords

Navigation