Skip to main content

Advertisement

Log in

Biocompatibility analysis in subcutaneous tissue and physico-chemical analysis of pre-mixed calcium silicate–based sealers

  • Research
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

To evaluate the biocompatibility, physical and chemical properties of three pre-mixed calcium silicate–based sealers and an epoxy resin–based material were assessed. Pre-mixed sealers supposedly obtain water from the root canal moist to hydrate and set.

Materials and methods

Polyethylene tubes were filled with the materials Bio-C Sealer Ion+, Bio-C Sealer, EndoSequence BC Sealer and AH Plus Jet, or left empty and surgically implanted in the subcutaneous tissue of Wistar rats. The animals were euthanised and the tubes and tissue were removed for histological analysis and scanning electron microscopy (SEM) coupled with energy-dispersive spectrometry (EDS). Materials’ surface chemical characterisation was assessed using Raman spectroscopy and SEM/EDS. Flow, setting time (in two conditions), solubility, radiopacity and pH were also analysed. ANOVA and Bonferroni correction were performed for comparisons (P < 0.05).

Results

Inflammatory response observed in the tissues subsided from 7 to 30 days. Tungsten migration could be detected in the surrounding tissue following AH Plus Jet implantation. All calcium silicate–based sealers exhibited zirconium oxide (radiopacifier) and tricalcium silicate peaks before and after implantation. All materials exhibited flow values above 17 mm. An approximately tenfold difference was observed between the plaster- and metal-mould setting times of the calcium silicate cements indicating its sensitivity to moist variations and solubility above 8% was also observed for these materials.

Conclusions

Pre-mixed materials exhibited variable setting time and solubility with a decreasing inflammatory response.

Clinical relevance

The variable moist-dependant setting time with high solubility poses a concern for the clinical use of these pre-mixed sealers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Viapiana R, Flumignan DL, Guerreiro-Tanomaru JM et al (2014) Physicochemical and mechanical properties of zirconium oxide and niobium oxide modified Portland cement-based experimental endodontic sealers. Int Endod J 47:437–448. https://doi.org/10.1111/iej.12167

    Article  PubMed  Google Scholar 

  2. Janini ACP, Pelepenko LE, Gomes BPFA, Marciano MA (2022) Physico-chemical properties of calcium silicate-based sealers in powder/liquid and ready-to-use forms. Braz Dent J 33:18–25. https://doi.org/10.1590/0103-6440202204832

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sanz JL, Guerrero-Gironés J, Pecci-Lloret MP et al (2021) Biological interactions between calcium silicate-based endodontic biomaterials and periodontal ligament stem cells: a systematic review of in vitro studies. Int Endod J. https://doi.org/10.1111/iej.13600

  4. Marciano MA, Duarte MAH, Camilleri J (2016) Calcium silicate-based sealers: assessment of physicochemical properties, porosity and hydration. Dent Mater 32:e30–e40. https://doi.org/10.1016/j.dental.2015.11.008

    Article  PubMed  Google Scholar 

  5. Duarte MAH, Marciano MA, Vivan RR, Tanomaru Filho M, Tanomaru JMG, Camilleri J (2018) Tricalcium silicatebased cements: properties and modifications. Braz Oral Res 18:32(suppl 1):e70. https://doi.org/10.1590/1807-3107bor-2018.vol32.0070

  6. Scarparo RK, Grecca FS, Fachin EVF (2009) Analysis of tissue reactions to methacrylate resin-based, epoxy resin-based, and zinc oxide-eugenol endodontic sealers. J Endod 35:229–232. https://doi.org/10.1016/j.joen.2008.10.025

    Article  PubMed  Google Scholar 

  7. Kebudi Benezra M, Schembri Wismayer P, Camilleri J (2017) Influence of environment on testing of hydraulic sealers. Sci Rep 7:17927. https://doi.org/10.1038/s41598-017-17280-7

    Article  PubMed  PubMed Central  Google Scholar 

  8. Khalil I, Naaman A, Camilleri J (2016) Properties of tricalcium silicate sealers. J Endod 42:1529–1535. https://doi.org/10.1016/j.joen.2016.06.002

    Article  PubMed  Google Scholar 

  9. Marciano MA, Guimarães BM, Ordinola-Zapata R et al (2011) Physical properties and interfacial adaptation of three epoxy resin-based sealers. J Endod 37:1417–1421. https://doi.org/10.1016/j.joen.2011.06.023

    Article  PubMed  Google Scholar 

  10. Generali L, Prati C, Pirani C et al (2017) Double dye technique and fluid filtration test to evaluate early sealing ability of an endodontic sealer. Clin Oral Investig 21:1267–1276. https://doi.org/10.1007/s00784-016-1878-0

    Article  PubMed  Google Scholar 

  11. Okamoto M, Matsumoto S, Moriyama K et al (2022) Biological evaluation of the effect of root canal sealers using a rat model. Pharmaceutics 14. https://doi.org/10.3390/pharmaceutics14102038

  12. De-Deus G, Souza EM, Silva EJNL et al (2022) A critical analysis of research methods and experimental models to study root canal fillings. Int Endod J 55(Suppl 2):384–445. https://doi.org/10.1111/iej.13713

    Article  PubMed  Google Scholar 

  13. Tagger M, Katz A (2003) Radiopacity of endodontic sealers: development of a new method for direct measurement. J Endod 29:751–755. https://doi.org/10.1097/00004770-200311000-00016

    Article  PubMed  Google Scholar 

  14. van der Burgt TP, Mullaney TP, Plasschaert AJ (1986) Tooth discoloration induced by endodontic sealers. Oral Surg Oral Med Oral Pathol 61:84–89. https://doi.org/10.1016/0030-4220(86)90208-2

    Article  PubMed  Google Scholar 

  15. Zhang W, Liu H, Wang Z et al (2022) Long-term porosity and retreatability of oval-shaped canals obturated using two different methods with a novel tricalcium silicate sealer. Clin Oral Investig 26:1045–1052. https://doi.org/10.1007/s00784-021-04088-z

    Article  PubMed  Google Scholar 

  16. Antunes TBM, Janini ACP, Pelepenko LE et al (2021) Heating stability, physical and chemical analysis of calcium silicate-based endodontic sealers. Int Endod J 54:1175–1188. https://doi.org/10.1111/iej.13496

    Article  PubMed  Google Scholar 

  17. Ozlek E, Gündüz H, Akkol E, Neelakantan P (2020) Dentin moisture conditions strongly influence its interactions with bioactive root canal sealers. Restor Dent Endod 45:1–9. https://doi.org/10.5395/rde.2020.45.e24

    Article  Google Scholar 

  18. Angelus (2019) Bio-C Sealer Ion+ brochure. 1–11. Available at: https://www.angelusdental.com/img/arquivos/bio_c_sealer_ion_angelus_dental.pdf

  19. Zordan-Bronzel CL, Esteves Torres FF, Tanomaru-Filho M et al (2019) Evaluation of physicochemical properties of a new calcium silicate–based sealer, Bio-C Sealer. J Endod 45:1248–1252. https://doi.org/10.1016/j.joen.2019.07.006

    Article  PubMed  Google Scholar 

  20. Chen B, Haapasalo M, Mobuchon C et al (2020) Cytotoxicity and the effect of temperature on physical properties and chemical composition of a new calcium silicate–based root canal sealer. J Endod 46:531–538. https://doi.org/10.1016/j.joen.2019.12.009

    Article  PubMed  Google Scholar 

  21. Silva Almeida LH, Moraes RR, Morgental RD, Pappen FG (2017) Are premixed calcium silicate–based endodontic sealers comparable to conventional materials? A systematic review of in vitro studies. J Endod 43:527–535. https://doi.org/10.1016/j.joen.2016.11.019

    Article  PubMed  Google Scholar 

  22. Schilder H (2006) Filling root canals in three dimensions. J Endod 32:281–290. https://doi.org/10.1016/j.joen.2006.02.007

    Article  PubMed  Google Scholar 

  23. Poggio C, Dagna A, Ceci M et al (2017) Solubility and pH of bioceramic root canal sealers: a comparative study. J Clin Exp Dent:e1189–e1194. https://doi.org/10.4317/jced.54040

  24. Donnermeyer D, Bürklein S, Dammaschke T, Schäfer E (2019) Endodontic sealers based on calcium silicates: a systematic review. Odontology 107:421–436. https://doi.org/10.1007/s10266-018-0400-3

    Article  PubMed  Google Scholar 

  25. ISO (2012) International Organization for Standardization - Dentistry - Root canal sealing materials. 6876:3–4

  26. Materials D (1984) ANSI/ADA specification no. 57 for endodontic filling materials. J Am Dent Assoc 108:88. https://doi.org/10.14219/jada.archive.1984.0208

    Article  Google Scholar 

  27. Zmener O, Spielberg C, Lamberghini F, Rucci M (1997) Sealing properties of a new epoxy resin-based root-canal sealer. Int Endod J 30:332–334. https://doi.org/10.1046/j.1365-2591.1997.00086.x

    Article  PubMed  Google Scholar 

  28. Schafer E, Zandbiglari T (2003) Solubility of root-canal sealers in water and artificial saliva. Int Endod J 36:660–669. https://doi.org/10.1046/j.1365-2591.2003.00705.x

    Article  PubMed  Google Scholar 

  29. Saleh IM, Ruyter IE, Haapasalo M, Orstavik D (2002) The effects of dentine pretreatment on the adhesion of root-canal sealers. Int Endod J 35:859–866. https://doi.org/10.1046/j.1365-2591.2002.00585.x

    Article  PubMed  Google Scholar 

  30. Adanir N, Çobankara FK, Belli S (2006) Sealing properties of different resin-based root canal sealers. J Biomed Mater Res Part B Appl Biomater 77B:1–4. https://doi.org/10.1002/jbm.b.30408

    Article  Google Scholar 

  31. Miletic I, Anic I, Pezelj-Ribaric S, Jukic S (1999) Leakage of five root canal sealers. Int Endod J 32:415–418. https://doi.org/10.1046/j.1365-2591.1999.00254.x

    Article  PubMed  Google Scholar 

  32. Haïkel Y, Freymann M, Fanti V et al (2000) Apical microleakage of radiolabeled lysozyme over time in three techniques of root canal obturation. J Endod 26:148–152. https://doi.org/10.1097/00004770-200003000-00005

    Article  PubMed  Google Scholar 

  33. Saleh IM, Ruyter IE, Haapasalo M, Ørstavik D (2004) Survival of Enterococcus faecalis in infected dentinal tubules after root canal filling with different root canal sealers in vitro. Int Endod J 37:193–198. https://doi.org/10.1111/j.0143-2885.2004.00785.x

    Article  PubMed  Google Scholar 

  34. Siqueira JF, Favieri A, Gahyva SM et al (2000) Antimicrobial activity and flow rate of newer and established root canal sealers. J Endod 26:274–277. https://doi.org/10.1097/00004770-200005000-00005

    Article  PubMed  Google Scholar 

  35. Azar NG, Heidari M, Bahrami ZS, Shokri F (2000) In vitro cytotoxicity of a new epoxy resin root canal sealer. J Endod 26:462–465. https://doi.org/10.1097/00004770-200008000-00008

    Article  PubMed  Google Scholar 

  36. Zavattini A, Knight A, Foschi F, Mannocci F (2020) Outcome of root canal treatments using a new calcium silicate root canal sealer: a non-randomized clinical trial. J Clin Med 9:782. https://doi.org/10.3390/jcm9030782

    Article  PubMed  PubMed Central  Google Scholar 

  37. Nagendrababu V, Kishen A, Murray PE et al (2021) PRIASE 2021 guidelines for reporting animal studies in Endodontology: a consensus-based development. Int Endod J 54:848–857. https://doi.org/10.1111/iej.13477

    Article  PubMed  Google Scholar 

  38. Benetti F, de Azevedo Queiroz ÍO, PHC de O et al (2019) Cytotoxicity and biocompatibility of a new bioceramic endodontic sealer containing calcium hydroxide. Braz Oral Res 33:e42. https://doi.org/10.1590/1807-3107bor-2019.vol33.0042

  39. Alves Silva EC, Tanomaru-Filho M, da Silva GF et al (2020) Biocompatibility and bioactive potential of new calcium silicate–based endodontic sealers: Bio-C Sealer and Sealer Plus BC. J Endod. 46(10):1470–1477. https://doi.org/10.1016/j.joen.2020.07.011

    Article  PubMed  Google Scholar 

  40. Flecknell P (2002) Replacement, reduction and refinement. ALTEX Altern zu Tierexperimenten 19:73–78

    Google Scholar 

  41. Paiva EM, Ribessi RL, Pereira CF, Rohwedder JJR (2020) Low-frequency Raman spectrophotometer with wide laser illumination on the sample: a tool for pharmaceutical analytical analysis. Spectrochim Acta Part A Mol Biomol Spectrosc 228:117798. https://doi.org/10.1016/j.saa.2019.117798

    Article  Google Scholar 

  42. Eilers PHC (2003) A perfect smoother. Anal Chem 75:3631–3636. https://doi.org/10.1021/ac034173t

    Article  PubMed  Google Scholar 

  43. Carvalho-Junior JR, Correr-Sobrinho L, Correr AB et al (2007) Solubility and dimensional change after setting of root canal sealers: a proposal for smaller dimensions of test samples. J Endod 33:1110–1116. https://doi.org/10.1016/j.joen.2007.06.004

    Article  PubMed  Google Scholar 

  44. Kim J-H, Cho S-Y, Choi Y et al (2022) Clinical efficacy of sealer-based obturation using calcium silicate sealers: a randomized clinical trial. J Endod 48:144–151. https://doi.org/10.1016/j.joen.2021.11.011

    Article  PubMed  Google Scholar 

  45. Bardini G, Casula L, Ambu E et al (2021) A 12-month follow-up of primary and secondary root canal treatment in teeth obturated with a hydraulic sealer. Clin Oral Investig 25:2757–2764. https://doi.org/10.1007/s00784-020-03590-0

    Article  PubMed  Google Scholar 

  46. Clause BT (1993) The Wistar rat as a right choice: establishing mammalian standards and the ideal of a standardized mammal. J Hist Biol 26:329–349. https://doi.org/10.1007/BF01061973

    Article  PubMed  Google Scholar 

  47. de Oliveira PHC, Gomes Filho JE, MJ da S R et al (2022) Influence of supplement administration of omega-3 on the subcutaneous tissue response of endodontic sealers in Wistar rats. Int Endod J 55:1026–1041. https://doi.org/10.1111/iej.13795

    Article  PubMed  Google Scholar 

  48. Almeida LH, Gomes APN, Gastmann AH et al (2019) Bone tissue response to an MTA-based endodontic sealer, and the effect of the addition of calcium aluminate and silver particles. Int Endod J 52:1446–1456. https://doi.org/10.1111/iej.13135

    Article  PubMed  Google Scholar 

  49. Marques Costa VS, Emerenciano Bueno C, Valentim D et al (2021) Biocompatibility and immunolabeling of fibronectin and tenascin of resinous root canal sealers. J Conserv Dent 24:323. https://doi.org/10.4103/jcd.jcd_628_20

    Article  PubMed  Google Scholar 

  50. Wismayer PS, Lung CYK, Rappa F et al (2016) Assessment of the interaction of Portland cement-based materials with blood and tissue fluids using an animal model. Nat Publ Gr 1–9. https://doi.org/10.1038/srep34547

  51. Húngaro Duarte MA, de Oliveira El Kadre GD, Vivan RR et al (2009) Radiopacity of Portland cement associated with different radiopacifying agents. J Endod 35:737–740. https://doi.org/10.1016/j.joen.2009.02.006

    Article  PubMed  Google Scholar 

  52. Salineiro FCS, Talamoni IP, Velasco SK et al (2019) Artifact induction by endodontic materials. Clin Lab Res Dent. https://doi.org/10.11606/issn.2357-8041.clrd.2019.155624

  53. Pelepenko LE, Saavedra F, Antunes TBM et al (2021) Physicochemical, antimicrobial, and biological properties of White-MTAFlow. Clin Oral Investig 25:663–672. https://doi.org/10.1007/s00784-020-03543-7

    Article  PubMed  Google Scholar 

  54. Moinzadeh AT, Aznar Portoles C, Schembri Wismayer P, Camilleri J (2016) Bioactivity potential of endo sequence BC RRM putty. J Endod 42:615–621. https://doi.org/10.1016/j.joen.2015.12.004

    Article  PubMed  Google Scholar 

  55. GT de M C, Correia FC, MAH D et al (2012) Evaluation of radiopacity, pH, release of calcium ions, and flow of a bioceramic root canal sealer. J Endod 38:842–845. https://doi.org/10.1016/j.joen.2012.02.029

    Article  Google Scholar 

  56. Estrela C, Pécora JD, Estrela CRA et al (2017) Common operative procedural errors and clinical factors associated with root canal treatment. Braz Dent J 28:179–190. https://doi.org/10.1590/0103-6440201702451

    Article  PubMed  Google Scholar 

  57. Zhou H, Shen Y, Zheng W et al (2013) Physical properties of 5 root canal sealers. J Endod 39:1281–1286. https://doi.org/10.1016/j.joen.2013.06.012

    Article  PubMed  Google Scholar 

  58. Loushine BA, Bryan TE, Looney SW et al (2011) Setting properties and cytotoxicity evaluation of a premixed bioceramic root canal sealer. J Endod 37:673–677. https://doi.org/10.1016/j.joen.2011.01.003

    Article  PubMed  Google Scholar 

  59. Xuereb M, Vella P, Damidot D et al (2015) In situ assessment of the setting of tricalcium silicate–based sealers using a dentin pressure model. J Endod 41:111–124. https://doi.org/10.1016/j.joen.2014.09.015

    Article  PubMed  Google Scholar 

  60. Ersahan S, Aydin C (2013) Solubility and apical sealing characteristics of a new calcium silicate-based root canal sealer in comparison to calcium hydroxide-, methacrylate resin- and epoxy resin-based sealers. Acta Odontol Scand 71:857–862. https://doi.org/10.3109/00016357.2012.734410

    Article  PubMed  Google Scholar 

  61. Koutroulis A, Kuehne SA, Cooper PR, Camilleri J (2019) The role of calcium ion release on biocompatibility and antimicrobial properties of hydraulic cements. Sci Rep 9:19019. https://doi.org/10.1038/s41598-019-55288-3

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Ana Cristina do Amaral Godoy for her technical assistance during histological processing, Adriano Luis Martins for his technical assistance in SEM/EDS and Rafael Soares de Sousa for his technical assistance in animal care.

Funding

This study was supported by the Sao Paulo Research Foundation (FAPESP 2019/22098-9). This study was also financed in part by the Coordination for the Improvement of Higher Education Personnel (CAPES) – Finance Code 001.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: L.E.P., A.C.P.J. and M.A.M.; methodology: L.E.P., A.C.P.J., V.A.B.S, N.A.S, I.M.R. Jr., B.P.F.A.G., J.M.B and M.A.M.; software: A.C.P.J. and M.A.M.; validation: L.E.P., A.C.P.J.; formal analysis: L.E.P. and M.A.M.; investigation: L.E.P., A.C.P.J. and M.A.M.; resources: M.A.M.; data curation: L.E.P., A.C.P.J., V.A.B.S, N.A.S, I.M.R. Jr., B.P.F.A.G. and M.A.M.; writing—original draft preparation: L.E.P.; writing—review and editing: M.A.M., B.P.F.A.G. and. I.M.R. Jr.; visualisation: L.E.P. and M.A.M.; supervision: M.A.M., B.P.F.A.G. and I.M.R. Jr.; project administration: M.A.M.; funding acquisition: M.A.M. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Ana Cristina Padilha Janini.

Ethics declarations

Ethics approval

This study was approved by the institutional ethics committee animal research of the Piracicaba Dental School (code CEUA 5387-1/2019).

Consent to participate

This study did not involve humans.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janini, A.C.P., Pelepenko, L.E., Boldieri, J.M. et al. Biocompatibility analysis in subcutaneous tissue and physico-chemical analysis of pre-mixed calcium silicate–based sealers. Clin Oral Invest 27, 2221–2234 (2023). https://doi.org/10.1007/s00784-023-04957-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-023-04957-9

Keywords

Navigation