Skip to main content

Advertisement

Log in

Experimental pastes containing niobophosphate and 45S5 bioactive glasses for treatment of dentin hypersensitivity: dentin permeability and tubule obliteration

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

This study tested the ability of bioactive pastes containing niobophosphate and 45S5 glasses to reduce dentin permeability and to obliterate dentinal tubules, as a mean of reducing human dentin hypersensitivity.

Materials and methods

Experimental pastes with concentrations of 10, 20, and 30 wt% of two bioactive glasses (45S5 or niobophosphate [NbG]) were formulated. A paste without bioactive glass (placebo) and a commercial paste (Nano P, FGM) were used as controls. Forty dentin disc specimens were obtained from caries-free extracted third human molars and divided in 8 groups (n = 5). Percentage of permeability (%Lp) was assessed in a dental permeability machine considering hydraulic conductance, immediately after pastes application and at day 7, day 14, and day 21. The precipitates formed on the surface of the dentin discs (and dentinal tubules) were analyzed by SEM/EDS and micro-Raman spectra. Data of dentin permeability (%) 2-way repeated-measures (ANOVA) and Holm-Sidak post-tests (α = 0.05). Dentinal tubule obliteration was visually (and elemental) evaluated and descriptively reported.

Results

The experimental bioactive glass pastes containing NbG and 45S5, regardless of the concentration, reduced dentin permeability in comparison with pastes without bioactive glasses (P < 0.05). The formulated placebo and commercial paste did not reduce permeability over time (P < 0.05). SEM/EDS and micro-Raman analyses showed that both type of bioactive pastes (NbG or 45S5-based) presented mineral precipitates obliterating the dentinal tubules at day 21. NbG seems to offer a better initial effect than 45S5, while at 21 days there is no difference between both glasses.

Conclusion

Experimental bioactive pastes containing NbG and 45S5 (at concentrations of 10%, 20%, or 30%) have potential to reduce dentin permeability (over time) in comparison with pastes without bioactive glasses; and this occurs on behalf of obliteration of dentinal tubules by microparticle and precipitate formation.

Clinical relevance

Bioactive pastes containing NbG and 45S5 may benefit patients presenting dentin hypersensitivity, because these pastes can start acting fast after application and maintain their action up to 21 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Amarasena N, Spencer J, Ou Y, Brennan D (2011) Dentine hypersensitivity in a private practice patient population in Australia. J Oral Rehabil 38(1):52–60. https://doi.org/10.1111/j.1365-2842.2010.02132.x

    Article  PubMed  Google Scholar 

  2. Costa RS, Rios FS, Moura MS, Jardim JJ, Maltz M, Haas AN (2014) Prevalence and risk indicators of dentin hypersensitivity in adult and elderly populations from Porto Alegre. Brazil. J Periodontol 85(9):1247–58. https://doi.org/10.1902/jop.2014.130728

    Article  PubMed  Google Scholar 

  3. Olley RC, Moazzez R, Bartlett D (2015) The relationship between incisal/occlusal wear, dentine hypersensitivity and time after the last acid exposure in vivo. J Dent 43(2):248–52. https://doi.org/10.1016/j.jdent.2014.11.002

    Article  PubMed  Google Scholar 

  4. Brännstrom M, Lindén LA, Johnson G (1968) Movement of dentinal and pulpal fluid caused by clinical procedures. J Dent Res 47(5):679–82. https://doi.org/10.1177/2F00220345680470050201

    Article  PubMed  Google Scholar 

  5. Pashley DH, Matthews WG, Zhang Y, Johnson M (1966) Fluid shifts across human dentine in vitro in response to hydrodynamic stimuli. Arch Oral Biol 41(11):1065–72. https://doi.org/10.1016/S0003-9969(96)00059-3

    Article  Google Scholar 

  6. Addy M, Pearce N (1994) Aetiological, predisposing and environmental factors in dentine hypersensitivity. Arch Oral Biol 39(Suppl):33S-38S. https://doi.org/10.1016/0003-9969(94)90186-4

    Article  PubMed  Google Scholar 

  7. Porto IC, Andrade AK, Montes MA (2009) Diagnosis and treatment of dentinal hypersensitivity. J Oral Sci 51(3):323–32. https://doi.org/10.2334/josnusd.51.323

    Article  PubMed  Google Scholar 

  8. Holland GR, Narhi MN, Addy M, Gangarosa L, Orchardson R (1997) Guidelines for the design and conduct of clinical trials on dentine hypersensitivity. J Clin Periodontol 24(11):808–13. https://doi.org/10.1111/j.1600-051X.1997.tb01194.x

    Article  PubMed  Google Scholar 

  9. Marto CM, Baptista Paula A, Nunes T, Pimenta M, Abrantes AM, Pires AS, Laranjo M, Coelho A, Donato H, Botelho MF, Marques Ferreira M, Carrilho E (2019) Evaluation of the efficacy of dentin hypersensitivity treatments-a systematic review and follow-up analysis. J Oral Rehabil 46(10):952–990. https://doi.org/10.1111/joor.12842

    Article  PubMed  Google Scholar 

  10. Galvão ADM, Zeola LF, Moura GF, Teixeira DNR, Gonzaga RCQ, da Silva GR, Soares PV (2019) A long-term evaluation of experimental potassium oxalate concentrations on dentin hypersensitivity reduction: a triple-blind randomized clinical trial. J Dent 89:103180. https://doi.org/10.1016/j.jdent.2019.103180

    Article  PubMed  Google Scholar 

  11. Hiller KA, Buchalla W, Grillmeier I, Neubauer C, Schmalz G (2018) In vitro effects of hydroxyapatite containing toothpastes on dentin permeability after multiple applications and ageing. Sci Rep 8(1):4888. https://doi.org/10.1038/s41598-018-22764-1

    Article  PubMed  PubMed Central  Google Scholar 

  12. Pashley DH, Galloway SE (1985) The effects of oxalate treatment on the smear layer of ground surfaces of human dentine. Arch Oral Biol 30(10):731–7. https://doi.org/10.1016/0003-9969(85)90185-2

    Article  PubMed  Google Scholar 

  13. Suge T, Ishikawa K, Kawasaki A, Yoshiyama M, Asaoka K, Ebisu S (1995) Duration of dentinal tubule occlusion formed by calcium phosphate precipitation method: in vitro evaluation using synthetic saliva. J Dent Res 74(10):1709–14. https://doi.org/10.1177/2F00220345950740101301

    Article  PubMed  Google Scholar 

  14. Poulsen S (2011) Available evidence does not support use of oxalates for dentine hypersensitivity. Evid Based Dent 12(2):47. https://doi.org/10.1038/sj.ebd.6400792

    Article  PubMed  Google Scholar 

  15. Mantzourani M, Sharma D (2013) Dentine sensitivity: past, present and future. J Dent 41(Suppl 4):S3-17. https://doi.org/10.1016/S0300-5712(13)70002-2

    Article  PubMed  Google Scholar 

  16. Bae JH, Kim YK, Myung SK (2015) Desensitizing toothpaste versus placebo for dentin hypersensitivity: a systematic review and meta-analysis. J Clin Periodontol 42(2):131–41. https://doi.org/10.1111/jcpe.12347

    Article  PubMed  Google Scholar 

  17. Loke C, Lee J, Sander S, Mei L, Farella M (2016) Factors affecting intra-oral pH - a review. J Oral Rehabil 43(10):778–85. https://doi.org/10.1111/joor.12429

    Article  PubMed  Google Scholar 

  18. Mei ML, Lo EC, Chu CH (2016) Clinical use of silver diamine fluoride in dental treatment. Compend Contin Educ Dent 37(2):93–8 (quiz100)

    PubMed  Google Scholar 

  19. Greenspan DC (2010) NovaMin and tooth sensitivity–an overview. J Clin Dent 21(3):61–5

    PubMed  Google Scholar 

  20. Curtis AR, West NX, Su B (2010) Synthesis of nanobioglass and formation of apatite rods to occlude exposed dentine tubules and eliminate hypersensitivity. Acta Biomater 6(9):3740–6. https://doi.org/10.1016/j.actbio.2010.02.045

    Article  PubMed  Google Scholar 

  21. Bakry AS, Takahashi H, Otsuki M, Tagami J (2014) Evaluation of new treatment for incipient enamel demineralization using 45S5 bioglass. Dent Mater 30(3):314–20. https://doi.org/10.1016/j.dental.2013.12.002

    Article  PubMed  Google Scholar 

  22. Sauro S, Thompson I, Watson TF (2011) Effects of common dental materials used in preventive or operative dentistry on dentin permeability and remineralization. Oper Dent 36(2):222–30. https://doi.org/10.2341/10-225-L

    Article  PubMed  Google Scholar 

  23. Cartwright RB (2014) Dentinal hypersensitivity: a narrative review. Community Dent Health 31(1):15–20

    PubMed  Google Scholar 

  24. Ananthakrishna S, Koshy S, Kumar N, Raghu T (2012) Clinical evaluation of the efficacy of bioactive glass and strontium chloride for treatment of dentinal hypersensitivity. J Interdiscip Dent. https://doi.org/10.4103/2229-5194.100600

    Article  Google Scholar 

  25. Mitchell JC, Musanje L, Ferracane JL (2011) Biomimetic dentin desensitizer based on nano-structured bioactive glass. Dent Mater 27(4):386–93. https://doi.org/10.1016/j.dental.2010.11.019

    Article  PubMed  Google Scholar 

  26. Jung JH, Park SB, Yoo KH, Yoon SY, Bae MK, Lee DJ, Ko CC, Kwon YH, Kim YI (2019) Effect of different sizes of bioactive glass-coated mesoporous silica nanoparticles on dentinal tubule occlusion and mineralization. Clin Oral Investig 23(5):2129–2141. https://doi.org/10.1007/s00784-018-2658-9

    Article  PubMed  Google Scholar 

  27. Sepulveda P, Jones JR, Hench LL (2001) Characterization of melt-derived 45S5 and sol-gel-derived 58S bioactive glasses. J Biomed Mater Res 58(6):734–40. https://doi.org/10.1002/jbm.10026

    Article  PubMed  Google Scholar 

  28. Hench LL (2015) The future of bioactive ceramics. J Mater Sci Mater Med 6(2):86. https://doi.org/10.1007/s10856-015-5425-3

    Article  Google Scholar 

  29. Bakry AS, Marghalani HY, Amin OA, Tagami J (2014) The effect of a bioglass paste on enamel exposed to erosive challenge. J Dent 42(11):1458–63. https://doi.org/10.1016/j.jdent.2014.05.014

    Article  PubMed  Google Scholar 

  30. Freda NM, Veitz-Keenan A (2016) Calcium sodium phosphosilicate had some benefit on dentine hypersensitivity. Evid Based Dent 17(1):12–3. https://doi.org/10.1038/sj.ebd.6401148

    Article  PubMed  Google Scholar 

  31. Freitas SAA, Oliveira NMA, de Geus JL, Souza SFC, Pereira AFV, Bauer J (2021) Bioactive toothpastes in dentin hypersensitivity treatment: a systematic review. Saudi Dent J 33(7):395–403. https://doi.org/10.1016/j.sdentj.2021.04.004

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ryou H, Niu LN, Dai L, Pucci CR, Arola DD, Pashley DH, Tay FR (2011) Effect of biomimetic remineralization on the dynamic nanomechanical properties of dentin hybrid layers. J Dent Res 90(9):1122–8. https://doi.org/10.1177/2F0022034511414059

    Article  PubMed  PubMed Central  Google Scholar 

  33. Carvalho CN, Freire LG, Carvalho AP, Duarte MA, Bauer J, Gavini G (2016) Ions release and pH of calcium hydroxide-, chlorhexidine- and bioactive glass-based endodontic medicaments. Braz Dent J 27(3):325–31. https://doi.org/10.1590/0103-6440201600602

    Article  PubMed  Google Scholar 

  34. Karlinsey RL, Mackey AC, Stookey GK, Pfarrer AM (2009) In vitro assessments of experimental NaF dentifrices containing a prospective calcium phosphate technology. Am J Dent 22(3):180–4

    PubMed  Google Scholar 

  35. Carneiro KK, Araujo TP, Carvalho EM, Meier MM, Tanaka A, Carvalho CN, Bauer J (2018) Bioactivity and properties of an adhesive system functionalized with an experimental niobium-based glass. J Mech Behav Biomed Mater 78:188–195. https://doi.org/10.1016/j.jmbbm.2017.11.016

    Article  PubMed  Google Scholar 

  36. Kushwaha M, Pan X, Holloway JA, Denry IL (2012) Differentiation of human mesenchymal stem cells on niobium-doped fluorapatite glass-ceramics. Dent Mater 28:252–260. https://doi.org/10.1016/j.dental.2011.10.010

    Article  PubMed  Google Scholar 

  37. Cardoso OS, Meier MM, Carvalho EM, Ferreira PVC, Gavini, G, Zago PMW, Grazziotin-Soares R, de Menezes AS, Carvalho CN, Bauer J (2022) Synthesis and characterization of experimental endodontic sealers containing bioactive glasses particles of NbG or 45S5. J Mec Behav Biomed Mater 125https://doi.org/10.1016/j.jmbbm.2021.104971

  38. Miyazaki T, Kim H-M, Kokubo T, Ohtsuki C, Nakamura T (2001) Apatite-forming ability of niobium oxide gels in a simulated body fluid. J Ceram Soc Japan 109:929–933. https://doi.org/10.2109/jcersj.109.1275_929

    Article  Google Scholar 

  39. Karlinsey RL, Hara AT, Yi, Duhn KCW (2006) Bioactivity of novel self-assembled crystalline Nb 2 O5 microstructures in simulated and human salivas. Biomed Mater 1:16–23. https://doi.org/10.1088/1748-6041/1/1/003

    Article  PubMed  Google Scholar 

  40. Carvalho EM, Lima DM, Carvalho CN, Loguercio AD, Martinelli JR, Bauer J (2015) Effect of airborne-particle abrasion on dentin with experimental niobophosphate bioactive glass on the microtensile bond strength of resin cements. J Prosthodont Res 59(2):129–35. https://doi.org/10.1016/j.jpor.2015.01.001

    Article  PubMed  Google Scholar 

  41. Mena-Serrano A, Costa TR, Patzlaff RT, Loguercio AD, Reis A (2014) Effect of sonic application mode on the resin-dentin bond strength and dentin permeability of self-etching systems. J Adhes Dent 16(5):435–40. https://doi.org/10.3290/j.jad.a32810

    Article  PubMed  Google Scholar 

  42. Pereira JC, Segala AD (2005) Gillam DG (2005) Effect of desensitizing agents on the hydraulic conductance of human dentin subjected to different surface pre-treatments–an in vitro study. Dent Mater. 21(2):129–38. https://doi.org/10.1016/j.dental.2004.02.007

    Article  PubMed  Google Scholar 

  43. Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27(15):2907–15. https://doi.org/10.1016/j.biomaterials.2006.01.017

    Article  PubMed  Google Scholar 

  44. Greenhill JD, Pashley DH (1981) The effects of desensitizing agents on the hydraulic conductance of human dentin in vitro. J Dent Res 60(3):686–98. https://doi.org/10.1177/2F00220345810600030401

    Article  PubMed  Google Scholar 

  45. Wang Z, Sa Y, Sauro S, Chen H, Xing W, Ma X, Jiang T, Wang Y (2010) Effect of desensitising toothpastes on dentinal tubule occlusion: a dentine permeability measurement and SEM in vitro study. J Dent 38(5):400–10. https://doi.org/10.1016/j.jdent.2010.01.007

    Article  PubMed  Google Scholar 

  46. Chen LW, Gu S, Jia XY (2015) Occluding effects of desensitizer containing NovaMin combined with fluor protector on dentinal tubules: an in vitro study. Shanghai Kou Qiang Yi Xue 24(5):535–40 (Chinese)

    PubMed  Google Scholar 

  47. Levenson D (2016) Beneficial effects seen with most desensitising toothpastes. Evid Based Dent 17(1):10–1. https://doi.org/10.1038/sj.ebd.6401147

    Article  PubMed  Google Scholar 

  48. Zhu M, Li J, Chen B, Mei L, Yao L, Tian J, Li H (2015) The effect of calcium sodium phosphosilicate on dentin hypersensitivity: a systematic review and meta-analysis. PLoS One 10(11):e0140176. https://doi.org/10.1371/journal.pone.0140176

    Article  PubMed  PubMed Central  Google Scholar 

  49. Parkinson CR, Hughes N, Hall C, Whelton H, Gallob J, Mason S (2016) Three randomized clinical trials to assess the short-term efficacy of anhydrous 0454% w/w stannous fluoride dentifrices for the relief of dentin hypersensitivity. Am J Dent 29(1):25–32

    PubMed  Google Scholar 

  50. Machado AC, Rabelo FEM, Maximiano V, Lopes RM, Aranha ACC (2019) Scaramucci T (2019) Effect of in-office desensitizers containing calcium and phosphate on dentin permeability and tubule occlusion. J Dent. 86:53–59. https://doi.org/10.1016/j.jdent.2019.05.025

    Article  PubMed  Google Scholar 

  51. Lopes JH, Magalhães A, Mazali IO, Bertran CA (2014) Effect of niobium oxide on the structure and properties of melt-derived bioactive glasses. J Am Ceram Soc 97:3843–3852. https://doi.org/10.1111/jace.13222

    Article  Google Scholar 

  52. Carbonari MJ, Faria JLB, König JB, Martinelli JR (2003) Bioactive niobium phosphate glasses for osseointegrated applications. Available from: https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2004026781

  53. Knowles JC, Franks K, Abrahams I (2001) Investigation of the solubility and ion release in the glass system K2O-Na2O-CaO-P2O5. Biomaterials 22(23):3091–6. https://doi.org/10.1016/S0142-9612(01)00057-6

    Article  PubMed  Google Scholar 

Download references

Funding

Conselho Nacional de Desenvolvimento Científico e Tecnológico [CNPq – 426145/2018-6 and 308286/2019-7], Fundação de Amparo a Pesquisa e ao Desenvolvimento Científico e Tecnológico do Maranhão [FAPEMA – Pronem 01628/14 and BEPP-01780/21]” and from the “Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) [Finance Code 001]”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Bauer.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, formal consent is not required.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Freitas, S.A.A., Ferreira, P.V.C., Carvalho, E.M. et al. Experimental pastes containing niobophosphate and 45S5 bioactive glasses for treatment of dentin hypersensitivity: dentin permeability and tubule obliteration. Clin Oral Invest 26, 6397–6407 (2022). https://doi.org/10.1007/s00784-022-04595-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-022-04595-7

Keywords

Navigation