Skip to main content

Advertisement

Log in

Viscosity modulation of resin composites versus hand application on internal adaptation of restorations

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objective

To compare the effect of the injection of viscosity modulated resin composites versus hand application without modulation, on the internal adaptation of different material to the gingival wall of class II preparations.

Materials and methods

Class II cavities were created on mesial and distal surfaces of 60 extracted human molars, resulting on 120 tooth preparations (n = 120). The preparations were restored with four resin composites: VIS-VisCalor (Voco); GRA-GrandioSO (Voco); FIL-Filtek One Bulk Fill (3 M/ESPE); and SON-SonicFill (Kerr). Each composite was applied by two different techniques: by hand (H) or assisted (A). For the hand technique, the material was placed into the preparation using a spatula. For the assisted technique, the resin composite was heated up to 65 °C (for VIS, GRA, and FIL) or sonicated (for SON) and injected into the preparation. After the restorative procedures, the teeth were completely demineralized to allow the restoration removal. The total area of the gingival wall and the area occupied by interfacial defects of adaptation (TDA) were measured by optical microscopy and digital software. The percentage of the area occupied by the defects (%TDA) in relation to the total area was calculated. The data were analyzed by two-way ANOVA and Tukey tests.

Results

Significant differences were observed for the application technique (p = 0.0403) and for the materials (p = 0.0184), as well for the interaction between them (p = 0.0452). The mean (standard deviation) of %TDA and results of Tukey test for the interaction were as follows: SON/H — 1.04(0.75)a; VIS/A — 2.01(0.92)a; VIS/H — 3.62(0.99)b; GRA/A — 6.23(3.32)b; FIL/H — 7.45(3.31)bc; GRA/H — 9.21(4.53)c; SON/A — 11.26(4.04)a; FIL/A — 17.89(5.08)d.

Conclusion

The injection of heated resin composites improves the adaptation to the walls in relation to the hand technique for VisCalor and GrandioSO but worsens for Filtek One. Sonic vibration increases the number of interfacial defects for SonicFill.

Clinical relevance

The physical modulation of the resin composite viscosity can improve or worsen the material adaptation to the walls of class II restoration. It had a positive impact for VisCalor and GrandioSO but a negative for Filtek One and SonicFill.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alvanforoush N, Palamara J, Wong RH, Burrow MF (2017) Comparison between published clinical success of direct resin composite restorations in vital posterior teeth in 1995–2005 and 2006–2016 periods. Aust Dent J 62:132–145. https://doi.org/10.1111/adj.12487

    Article  PubMed  Google Scholar 

  2. Chuang SF, Liu JK, Chao CC et al (2001) Effects of flowable composite lining and operator experience on microleakage and internal voids in class II composite restorations. J Prosthet Dent 85:177–183. https://doi.org/10.1067/mpr.2001.113780

    Article  PubMed  Google Scholar 

  3. Opdam NJM, Roeters FJM, Feilzer AJ, Verdonschot EH (1998) Marginal integrity and postoperative sensitivity in class 2 resin composite restorations in vivo. J Dent 26:555–562. https://doi.org/10.1016/S0300-5712(97)00042-0

    Article  PubMed  Google Scholar 

  4. Cramer NB, Stansbury JW, Bowman CN (2011) Recent advances and developments in composite dental restorative materials. J Dent Res 90:402–416. https://doi.org/10.1177/0022034510381263

    Article  PubMed  PubMed Central  Google Scholar 

  5. Pardo Díaz CA, Shimokawa C, Sampaio CS et al (2020) Characterization and comparative analysis of voids in class II composite resin restorations by optical coherence tomography. Oper Dent 45:71–79. https://doi.org/10.2341/18-290-L

    Article  PubMed  Google Scholar 

  6. Beolchi RS, Moura-Netto C, Palo RM et al (2015) Changes in irradiance and energy density in relation to different curing distances. Braz Oral Res 29:1–7. https://doi.org/10.1590/1807-3107BOR-2015.vol29.0060

    Article  Google Scholar 

  7. Park J, Chang J, Ferracane J, Lee IB (2008) How should composite be layered to reduce shrinkage stress: incremental or bulk filling? Dent Mater 24:1501–1505. https://doi.org/10.1016/j.dental.2008.03.013

    Article  PubMed  Google Scholar 

  8. Kovarik RE, Ergle JW (1993) Fracture toughness of posterior composite resins fabricated by incremental layering. J Prosthet Dent 69:557–560. https://doi.org/10.1016/0022-3913(93)90280-2

    Article  PubMed  Google Scholar 

  9. Opdam NJM, Roeters JJM, de Boer T et al (2003) Voids and porosities in class I micropreparations filled with various resin composites. Oper Dent 28:9–14

    PubMed  Google Scholar 

  10. Jörgensen KD, Hisamitsu H (1983) Porosity in microfill restorative composites cured by visible light. Eur J Oral Sci 91:396–405. https://doi.org/10.1111/j.1600-0722.1983.tb00836.x

    Article  Google Scholar 

  11. Ironside JG, Makinson OF (1993) Resin restorations: causes of porosities. Quintessence Int (Berl) 24:867–873

    Google Scholar 

  12. Ilie N, Bucuta S, Draenert M (2013) Bulk-fill resin-based composites: an in vitro assessment of their mechanical performance. Oper Dent 38:618–625. https://doi.org/10.2341/12-395-L

    Article  PubMed  Google Scholar 

  13. Zorzin J, Maier E, Harre S et al (2015) Bulk-fill resin composites: polymerization properties and extended light curing. Dent Mater 31:293–301. https://doi.org/10.1016/j.dental.2014.12.010

    Article  PubMed  Google Scholar 

  14. Soares CJ, Rosatto CMP, Carvalho VF et al (2017) Radiopacity and porosity of bulk-fill and conventional composite posterior restorations-digital X-ray analysis. Oper Dent 42:616–625. https://doi.org/10.2341/16-146-L

    Article  PubMed  Google Scholar 

  15. Jarisch J, Lien W, Guevara PH et al (2016) Microcomputed tomographic comparison of posterior composite resin restorative techniques: sonicated bulk fill versus incremental fill. Gen Dent 64:20–23

    PubMed  Google Scholar 

  16. Ferdianakis K (1998) Microleakage reduction from newer esthetic restorative materials in permanent molars. J Clin Pediatr Dent 22:221–229

    PubMed  Google Scholar 

  17. Korkmaz Y, Ozel E, Attar N (2007) Effect of flowable composite lining on microleakage and internal voids in class II composite restorations. J Adhes Dent 9:189–194

    PubMed  Google Scholar 

  18. Nie J, Wang XY, Gao XJ (2015) Micro-CT observations of the adaptation at gingival wall in class II restorations with different dental restorative materials. J Peking Univ 47:317–320

    Google Scholar 

  19. Opdam NJM, Roeters JJM, Joosten M, Veeke OVD (2002) Porosities and voids in class I restorations placed by six operators using a packable or syringable composite. Dent Mater 18:58–63. https://doi.org/10.1016/S0109-5641(01)00020-3

    Article  PubMed  Google Scholar 

  20. Savage B, McWhorter AG, C.A. Kerins NSS, (2009) Preventive resin restorations: practice and billing patterns of pediatric dentists. Pediatr Dent 31:210–215

    PubMed  Google Scholar 

  21. Payne JH (1999) The marginal seal of class II restorations: flowable composite resin compared to injectable glass ionomer. J Clin Pediatr Dent 23:123–130

    PubMed  Google Scholar 

  22. Majety KK, Pujar M (2011) In vitro evaluation of microleakage of class II packable composite resin restorations using flowable composite and resin modified glass ionomers as intermediate layers. J Conserv Dent 14:414–417. https://doi.org/10.4103/0972-0707.87215

    Article  PubMed  PubMed Central  Google Scholar 

  23. Haak R, Wicht MJ, Noack MJ (2003) Marginal and internal adaptation of extended class I restorations lined with flowable composites. J Dent 31:231–239. https://doi.org/10.1016/S0300-5712(03)00030-7

    Article  PubMed  Google Scholar 

  24. Loumprinis N, Maier E, Belli R et al (2021) Viscosity and stickiness of dental resin composites at elevated temperatures. Dent Mater 37:413–422. https://doi.org/10.1016/j.dental.2020.11.024

    Article  PubMed  Google Scholar 

  25. Trushkowsky R (2002) A new technique for placement of posterior composite. Dent Today 21:20–21

    PubMed  Google Scholar 

  26. Daronch M, Rueggeberg FA, Moss L, de Goes MF (2006) Clinically relevant issues related to preheating composites. J Esthet Restor Dent 18:340–350. https://doi.org/10.1111/j.1708-8240.2006.00046.x

    Article  PubMed  Google Scholar 

  27. Deliperi S, Bardwell DN (2007) Preheating composite resin: a clinical perspective. Pract Proced Aesthet Dent 19:161–164

    PubMed  Google Scholar 

  28. Blalock JS, Holmes RG, Rueggeberg FA (2006) Effect of temperature on unpolymerized composite resin film thickness. J Prosthet Dent 96:424–432. https://doi.org/10.1016/j.prosdent.2006.09.022

    Article  PubMed  Google Scholar 

  29. Demirel G, Orhan AI, Irmak Ö et al (2021) Micro-computed tomographic evaluation of the effects of pre-heating and sonic delivery on the internal void formation of bulk-fill composites. Dent Mater J 40:525–531. https://doi.org/10.4012/dmj.2020-071

    Article  PubMed  Google Scholar 

  30. Wagner WC, Aksu MN, Neme AL et al (2008) Effect of pre-heating resin composite on restoration microleakage. Oper Dent 33:72–78. https://doi.org/10.2341/07-41

    Article  PubMed  Google Scholar 

  31. Zach L, Cohen G (1965) Pulp response to externally applied heat. Oral Surg Oral Med Oral Pathol 19:515–530

    Article  Google Scholar 

  32. Daronch M, Rueggeberg FA, Hall G, De Goes MF (2007) Effect of composite temperature on in vitro intrapulpal temperature rise. Dent Mater 23:1283–1288. https://doi.org/10.1016/j.dental.2006.11.024

    Article  PubMed  Google Scholar 

  33. Al-Ahdal K, Silikas N, Watts DC (2014) Rheological properties of resin composites according to variations in composition and temperature. Dent Mater 30:517–524. https://doi.org/10.1016/j.dental.2014.02.005

    Article  PubMed  Google Scholar 

  34. Chen J, Chen Y, Li H et al (2010) Physical and chemical effects of ultrasound vibration on polymer melt in extrusion. Ultrason Sonochem 17:66–71. https://doi.org/10.1016/j.ultsonch.2009.05.005

    Article  PubMed  Google Scholar 

  35. Agarwal RS, Hiremath H, Agarwal J, Garg A (2015) Evaluation of cervical marginal and internal adaptation using newer bulk fill composites: an in vitro study. J Conserv Dent 18:56–61. https://doi.org/10.4103/0972-0707.148897

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hirata R, Pacheco RR, Caceres E et al (2018) Effect of sonic resin composite delivery on void formation assessed by micro-computed tomography. Oper Dent 43:144–150. https://doi.org/10.2341/16-331-L

    Article  PubMed  Google Scholar 

  37. Kachalia PR (2013) Composite resins 2.0: entering a new age of posterior composites. Dent Today 32:78–81

    PubMed  Google Scholar 

  38. Benetti AR, Havndrup-Pedersen C, Honoré D et al (2015) Bulk-fill resin composites: polymerization contraction, depth of cure, and gap formation. Oper Dent 40:190–200. https://doi.org/10.2341/13-324-L

    Article  PubMed  Google Scholar 

  39. Gaintantzopoulou MD, Gopinath VK, Zinelis S (2017) Evaluation of cavity wall adaptation of bulk esthetic materials to restore class II cavities in primary molars. Clin Oral Investig 21:1063–1070. https://doi.org/10.1007/s00784-016-1848-6

    Article  PubMed  Google Scholar 

  40. Kwon SR, Oyoyo U, Li Y (2014) Influence of application techniques on contact formation and voids in anterior resin composite restorations. Oper Dent 39:213–220. https://doi.org/10.2341/13-060-L

    Article  PubMed  Google Scholar 

  41. Torres CRG, Caneppele TMF, Borges AB et al (2011) Influence of pre-cure temperature on Vickers microhardness of resin composite. Int J Contemp Dent 2:41–45

    Google Scholar 

  42. Torres ACM, Torres CRG, de Araújo MAM (2004) Influence of pre-cure temperature and photo-activation time in the marginal microleakage. Rev Odontol da UNESP 33:163–168

    Google Scholar 

  43. Lucey S, Lynch CD, Ray NJ et al (2010) Effect of pre-heating on the viscosity and microhardness of a resin composite. J Oral Rehabil 37:278–282. https://doi.org/10.1111/j.1365-2842.2009.02045.x

    Article  PubMed  Google Scholar 

  44. Dionysopoulos D, Tolidis K, Gerasimou P, Koliniotou-Koumpia E (2014) Effect of preheating on the film thickness of contemporary composite restorative materials. J Dent Sci 9:313–319. https://doi.org/10.1016/j.jds.2014.03.006

    Article  Google Scholar 

  45. Ertl K, Graf A, Watts D, Schedle A (2010) Stickiness of dental resin composite materials to steel, dentin and bonded dentin. Dent Mater 26:59–66. https://doi.org/10.1016/j.dental.2009.08.006

    Article  PubMed  Google Scholar 

  46. Lee JH, Um CM, Lee I bog (2006) Rheological properties of resin composites according to variations in monomer and filler composition. Dent Mater 22:515–526. https://doi.org/10.1016/j.dental.2005.05.008

    Article  PubMed  Google Scholar 

  47. Yang J, Silikas N, Watts DC (2019) Pre-heating effects on extrusion force, stickiness and packability of resin-based composite. Dent Mater 35:1594–1602. https://doi.org/10.1016/j.dental.2019.08.101

    Article  PubMed  Google Scholar 

  48. Medlock JW, Zinck JH, Norling BK, Sisca RF (1985) Composite resin porosity with hand and syringe insertion. J Prosthet Dent 54:47–51. https://doi.org/10.1016/s0022-3913(85)80068-8

    Article  PubMed  Google Scholar 

  49. Opdam NJM, Roeters JJM, Peters TCRB et al (1996) Cavity wall adaptation and voids in adhesive class I resin composite restorations. Dent Mater 12:230–235. https://doi.org/10.1016/S0109-5641(96)80028-5

    Article  PubMed  Google Scholar 

  50. Hansen EK (1984) Marginal porosity of light activated composites in relation to use of intermediate low-viscous resins. Scand J Dent Res 92:148–155. https://doi.org/10.1111/j.1600-0722.1984.tb00871.x

    Article  PubMed  Google Scholar 

  51. Tyas MJ, Jones DW, Rizkalla AS (1998) The evaluation of resin composite consistency. Dent Mater 14:424–428. https://doi.org/10.1016/S0300-5712(99)00017-2

    Article  PubMed  Google Scholar 

  52. Gajewski VES, Pfeifer CS, Fróes-Salgado NRG et al (2012) Monomers used in resin composites: degree of conversion, mechanical properties and water sorption/solubility. Braz Dent J 23:508–514. https://doi.org/10.1590/S0103-64402012000500007

    Article  PubMed  Google Scholar 

  53. Kaleem M, Satterthwaite JD, Watts DC (2009) Effect of filler particle size and morphology on force/work parameters for stickiness of unset resin-composites. Dent Mater 25:1585–1592. https://doi.org/10.1016/j.dental.2009.08.002

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Rocha Gomes Torres.

Ethics declarations

Ethics approval

Approved by the local Ethics Committee (protocol No. 089872/2019– CAAE 17738719.3.0000.0077).

Consent to participate

The authors declare that this study did not use informed consent.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrade, A.C.M., Trennepohl, A.A., Moecke, S.E. et al. Viscosity modulation of resin composites versus hand application on internal adaptation of restorations. Clin Oral Invest 26, 4847–4856 (2022). https://doi.org/10.1007/s00784-022-04452-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-022-04452-7

Keywords

Navigation