Skip to main content

Advertisement

Log in

Detection and classification of mandibular fracture on CT scan using deep convolutional neural network

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

This study aimed to evaluate the accuracy and reliability of convolutional neural networks (CNNs) for the detection and classification of mandibular fracture on spiral computed tomography (CT).

Materials and methods

Between January 2013 and July 2020, 686 patients with mandibular fractures who underwent CT scan were classified and annotated by three experienced maxillofacial surgeons serving as the ground truth. An algorithm including two convolutional neural networks (U-Net and ResNet) was trained, validated, and tested using 222, 56, and 408 CT scans, respectively. The diagnostic performance of the algorithm was compared with the ground truth and evaluated by DICE, accuracy, sensitivity, specificity, and area under the ROC curve (AUC).

Results

One thousand five hundred six mandibular fractures in nine subregions of 686 patients were diagnosed. The DICE of mandible segmentation using U-Net was 0.943. The accuracies of nine subregions were all above 90%, with a mean AUC of 0.956.

Conclusions

CNNs showed comparable reliability and accuracy in detecting and classifying mandibular fractures on CT.

Clinical relevance

The algorithm for automatic detection and classification of mandibular fractures will help improve diagnostic efficiency and provide expertise to areas with lower medical levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chrcanovic BR, Abreu MH, Freire-Maia B, Souza LN (2012) 1,454 mandibular fractures: a 3-year study in a hospital in Belo Horizonte, Brazil. Journal of cranio-maxillo-facial surgery : official publication of the European Association for Cranio-Maxillo-Facial Surgery 40:116–123. https://doi.org/10.1016/j.jcms.2011.03.012

    Article  Google Scholar 

  2. Boffano P, Kommers SC, Roccia F, Forouzanfar T (2015) Mandibular trauma treatment: a comparison of two protocols. Medicina oral, patologia oral y cirugia bucal 20:e218–e223. https://doi.org/10.4317/medoral.20263

    Article  PubMed  Google Scholar 

  3. Boffano P, Roccia F, Zavattero E, Dediol E, Uglešić V, Kovačič Ž, Vesnaver A, Konstantinović VS, Petrović M, Stephens J, Kanzaria A, Bhatti N, Holmes S, Pechalova PF, Bakardjiev AG, Malanchuk VA, Kopchak AV, Galteland P, Mjøen E, Skjelbred P, Koudougou C, Mouallem G, Corre P, Løes S, Lekven N, Laverick S, Gordon P, Tamme T, Akermann S, Karagozoglu KH, Kommers SC, Forouzanfar T (2015) European Maxillofacial Trauma (EURMAT) project: a multicentre and prospective study. Journal of cranio-maxillo-facial surgery : official publication of the European Association for Cranio-Maxillo-Facial Surgery 43:62–70. https://doi.org/10.1016/j.jcms.2014.10.011

    Article  Google Scholar 

  4. He D, Zhang Y, Ellis E 3rd (2007) Panfacial fractures: analysis of 33 cases treated late. Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons 65:2459–2465. https://doi.org/10.1016/j.joms.2007.06.625

    Article  Google Scholar 

  5. Shen D, Wu G, Suk HI (2017) Deep Learning in Medical Image Analysis. Annu Rev Biomed Eng 19:221–248. https://doi.org/10.1146/annurev-bioeng-071516-044442

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kalmet PHS, Sanduleanu S, Primakov S, Wu G, Jochems A, Refaee T, Ibrahim A, Hulst LV, Lambin P, Poeze M (2020) Deep learning in fracture detection: a narrative review. Acta Orthop 91:215–220. https://doi.org/10.1080/17453674.2019.1711323

    Article  PubMed  PubMed Central  Google Scholar 

  7. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak J, van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88. https://doi.org/10.1016/j.media.2017.07.005

    Article  PubMed  Google Scholar 

  8. Olczak J, Fahlberg N, Maki A, Razavian AS, Jilert A, Stark A, Sköldenberg O, Gordon M (2017) Artificial intelligence for analyzing orthopedic trauma radiographs. Acta Orthop 88:581–586. https://doi.org/10.1080/17453674.2017.1344459

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chung SW, Han SS, Lee JW, Oh KS, Kim NR, Yoon JP, Kim JY, Moon SH, Kwon J, Lee HJ, Noh YM, Kim Y (2018) Automated detection and classification of the proximal humerus fracture by using deep learning algorithm. Acta Orthop 89:468–473. https://doi.org/10.1080/17453674.2018.1453714

    Article  PubMed  PubMed Central  Google Scholar 

  10. Tomita N, Cheung YY, Hassanpour S (2018) Deep neural networks for automatic detection of osteoporotic vertebral fractures on CT scans. Comput Biol Med 98:8–15. https://doi.org/10.1016/j.compbiomed.2018.05.011

    Article  PubMed  Google Scholar 

  11. Adams M, Chen W, Holcdorf D, McCusker MW, Howe PD, Gaillard F (2019) Computer vs human: Deep learning versus perceptual training for the detection of neck of femur fractures. J Med Imaging Radiat Oncol 63:27–32. https://doi.org/10.1111/1754-9485.12828

    Article  PubMed  Google Scholar 

  12. Urakawa T, Tanaka Y, Goto S, Matsuzawa H, Watanabe K, Endo N (2019) Detecting intertrochanteric hip fractures with orthopedist-level accuracy using a deep convolutional neural network. Skeletal Radiol 48:239–244. https://doi.org/10.1007/s00256-018-3016-3

    Article  PubMed  Google Scholar 

  13. Lindsey R, Daluiski A, Chopra S, Lachapelle A, Mozer M, Sicular S, Hanel D, Gardner M, Gupta A, Hotchkiss R, Potter H (2018) Deep neural network improves fracture detection by clinicians. Proc Natl Acad Sci USA 115:11591–11596. https://doi.org/10.1073/pnas.1806905115

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhou QQ, Wang J, Tang W, Hu ZC, Xia ZY, Li XS, Zhang R, Yin X, Zhang B, Zhang H (2020) Automatic Detection and Classification of Rib Fractures on Thoracic CT Using Convolutional Neural Network: Accuracy and Feasibility. Korean J Radiol 21:869–879. https://doi.org/10.3348/kjr.2019.0651

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kelly DE and Harrigan WF (1975) A survey of facial fractures: Bellevue Hospital, 1948–1974. Journal of oral surgery (American Dental Association : 1965) 33:146–9.

  16. Cornelius CP, Audigé L, Kunz C, Rudderman R, Buitrago-Téllez CH, Frodel J, Prein J (2014) The Comprehensive AOCMF Classification System: Mandible Fractures- Level 2 Tutorial. Craniomaxillofac Trauma Reconstr 7:S015-30. https://doi.org/10.1055/s-0034-1389557

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yun Z, Yang S, Huang E, Zhao L, Yang W, Feng Q (2019) Automatic reconstruction method for high-contrast panoramic image from dental cone-beam CT data. Comput Methods Programs Biomed 175:205–214. https://doi.org/10.1016/j.cmpb.2019.04.024

    Article  PubMed  Google Scholar 

  18. Ronneberger O, Fischer P, Brox TJICoMIC and Intervention C-A (2015) U-Net: Convolutional Networks for Biomedical Image Segmentation.

  19. Liu L, Cheng J, Quan Q, Wu F-X, Wang Y-P, Wang J (2020) A survey on U-shaped networks in medical image segmentations. Neurocomputing 409:244–258. https://doi.org/10.1016/j.neucom.2020.05.070

    Article  Google Scholar 

  20. Taghanaki SA, Zheng Y, Kevin Zhou S, Georgescu B, Sharma P, Xu D, Comaniciu D, Hamarneh G (2019) Combo loss: handling input and output imbalance in multi-organ segmentation. Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society 75:24–33. https://doi.org/10.1016/j.compmedimag.2019.04.005

    Article  Google Scholar 

  21. Loshchilov I and Hutter F (2017) Decoupled Weight Decay Regularization.

  22. Dice LR (1945) Measures of the Amount of Ecologic Association Between Species 26:297–302. https://doi.org/10.2307/1932409

    Article  Google Scholar 

  23. He K, Zhang X, Ren S and Sun JJI (2016) Deep Residual Learning for Image Recognition.

  24. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M, Berg AC, Fei-Fei L (2015) ImageNet Large Scale Visual Recognition Challenge. Int J Comput Vision 115:211–252. https://doi.org/10.1007/s11263-015-0816-y

    Article  Google Scholar 

  25. Szegedy C, Vanhoucke V, Ioffe S, Shlens J and Wojna Z (2016) Rethinking the Inception Architecture for Computer Vision.

  26. Ellis E 3rd, Moos KF, el-Attar A, (1985) Ten years of mandibular fractures: an analysis of 2,137 cases. Oral Surg Oral Med Oral Pathol 59:120–129. https://doi.org/10.1016/0030-4220(85)90002-7

    Article  PubMed  Google Scholar 

  27. Gassner R, Tuli T, Hächl O, Rudisch A, Ulmer H (2003) Cranio-maxillofacial trauma: a 10 year review of 9,543 cases with 21,067 injuries. Journal of cranio-maxillo-facial surgery : official publication of the European Association for Cranio-Maxillo-Facial Surgery 31:51–61. https://doi.org/10.1016/s1010-5182(02)00168-3

    Article  Google Scholar 

  28. Erol B, Tanrikulu R, Görgün B (2004) Maxillofacial fractures. Analysis of demographic distribution and treatment in 2901 patients (25-year experience). Journal of cranio-maxillo-facial surgery : official publication of the European Association for Cranio-Maxillo-Facial Surgery 32:308–313. https://doi.org/10.1016/j.jcms.2004.04.006

    Article  Google Scholar 

  29. Pinto A, Acampora C, Pinto F, Kourdioukova E, Romano L, Verstraete K (2011) Learning from diagnostic errors: a good way to improve education in radiology. Eur J Radiol 78:372–376. https://doi.org/10.1016/j.ejrad.2010.12.028

    Article  PubMed  Google Scholar 

  30. Krupinski EA, Berbaum KS, Caldwell RT, Schartz KM, Kim J (2010) Long radiology workdays reduce detection and accommodation accuracy. J Am Coll Radiol 7:698–704. https://doi.org/10.1016/j.jacr.2010.03.004

    Article  PubMed  PubMed Central  Google Scholar 

  31. Brady AP (2017) Error and discrepancy in radiology: inevitable or avoidable? Insights Imaging 8:171–182. https://doi.org/10.1007/s13244-016-0534-1

    Article  PubMed  Google Scholar 

  32. Lee CS, Nagy PG, Weaver SJ, Newman-Toker DE (2013) Cognitive and system factors contributing to diagnostic errors in radiology. AJR Am J Roentgenol 201:611–617. https://doi.org/10.2214/AJR.12.10375

    Article  PubMed  Google Scholar 

  33. Erickson BJ, Korfiatis P, Akkus Z, Kline TL (2017) Machine learning for medical imaging. radiographics : a review publication of the Radiological Society of North America. Inc 37:505–515. https://doi.org/10.1148/rg.2017160130

    Article  Google Scholar 

  34. Chartrand G, Cheng PM, Vorontsov E, Drozdzal M, Turcotte S, Pal CJ, Kadoury S and Tang A (2017) Deep learning: a primer for radiologists. Radiographics : a review publication of the Radiological Society of North America, Inc 37:2113–2131. doi: https://doi.org/10.1148/rg.2017170077

  35. Deniz CM, Xiang S, Hallyburton RS, Welbeck A, Babb JS, Honig S, Cho K, Chang G (2018) Segmentation of the proximal femur from MR images using deep convolutional neural networks. Sci Rep 8:16485. https://doi.org/10.1038/s41598-018-34817-6

    Article  PubMed  PubMed Central  Google Scholar 

  36. Qiu B, Guo J, Kraeima J, Glas HH, Borra RJH, Witjes MJH, van Ooijen PMA (2019) Automatic segmentation of the mandible from computed tomography scans for 3D virtual surgical planning using the convolutional neural network. Phys Med Biol 64:175020. https://doi.org/10.1088/1361-6560/ab2c95

    Article  PubMed  Google Scholar 

  37. Noguchi S, Nishio M, Yakami M, Nakagomi K, Togashi K (2020) Bone segmentation on whole-body CT using convolutional neural network with novel data augmentation techniques. Comput Biol Med 121:103767. https://doi.org/10.1016/j.compbiomed.2020.103767

    Article  PubMed  Google Scholar 

  38. Pranata YD, Wang KC, Wang JC, Idram I, Lai JY, Liu JW, Hsieh IH (2019) Deep learning and SURF for automated classification and detection of calcaneus fractures in CT images. Comput Methods Programs Biomed 171:27–37. https://doi.org/10.1016/j.cmpb.2019.02.006

    Article  PubMed  Google Scholar 

  39. Olczak J, Emilson F, Razavian A, Antonsson T, Stark A, Gordon M (2021) Ankle fracture classification using deep learning: automating detailed AO Foundation/Orthopedic Trauma Association (AO/OTA) 2018 malleolar fracture identification reaches a high degree of correct classification. Acta Orthop 92:102–108. https://doi.org/10.1080/17453674.2020.1837420

    Article  PubMed  Google Scholar 

  40. Cornelius CP, Audigé L, Kunz C, Rudderman R, Buitrago-Téllez CH, Frodel J, Prein J (2014) The comprehensive AOCMF classification system: mandible fractures-level 3 Tutorial. Craniomaxillofac Trauma Reconstr 7:S031-43. https://doi.org/10.1055/s-0034-1389558

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the assistance of the radiological department of Peking University School and Hospital of Stomatology in Beijing, China, for database establishment.

The first author Dr. Xuebing Wang acknowledges the care and assistance from Dr. Ruiliu Li, Dr. Lihang Shen, Dr. Hang Wang, Dr. Chengyi Wang, Dr. Huiyu Peng, Dr. Xiyue Wang, and Feier Wang.

Funding

This study was supported by the National Key Research and Development Program of China (2019YFF0302401). The funding agencies had no role in study design, implementation procedures, analysis of results, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Yang He conceived the ideas. Xuebing Wang participated in the study design and collected and annotated all the data. Zineng Xu developed the algorithm. Xuebing Wang and Zineng Xu contributed equally to the article writing. Yanhang Tong and Long Xia participated in data annotation. Bimeng Jie contributed to the polish of the article. Hailong Bai and Peng Ding provided technical support. Yi Zhang provided the research platform. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yang He.

Ethics declarations

Ethics approval

All the procedure was approved by the Ethics Committee of Peking University School and Hospital of Stomatology (protocol No. PKUSSIRB-202054056) and was conducted in accordance with the relevant guidelines and regulations.

Informed consent

For this type of study, formal consent is not required.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Xu, Z., Tong, Y. et al. Detection and classification of mandibular fracture on CT scan using deep convolutional neural network. Clin Oral Invest 26, 4593–4601 (2022). https://doi.org/10.1007/s00784-022-04427-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-022-04427-8

Keywords

Navigation