Skip to main content

Advertisement

Log in

The effects of different silicatization and silanization protocols on the bond durability of resin cements to new high-translucent zirconia

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objective

The aim of this study was to assess the influence of different silicatization protocols with various silane treatment methods on the bond performance to high-translucent zirconia.

Materials and methods

High-translucent zirconia specimens were assigned to five groups according to mechanical surface pretreatment: as-sintered (Con), 0.2 MPa alumina sandblasting (AB2), tribochemical silica coating (TSC), 0.2 and 0.4 MPa glass bead air abrasion (GB2) and (GB4). Each group was subjected to 4 different cementation protocols: Panavia SA Universal (SAU), Panavia SA plus (SAP), silane + SAP (S-SAP), and Universal adhesive + SAP (U-SAP). Tensile bond strength (TBS) was measured after 24 h and 10,000 thermocycling (TC). Surface topography, surface energy, and elemental composition of the abraded zirconia surface analyses were completed. TBS data was analyzed using the Weibull analysis method. Surface roughness and surface energy were compared by one-way ANOVA analysis of variance (α = 0.05).

Results

After 24 h, higher TBS was achieved with all cementation protocols in AB2 and TSC, also, in GB2 with all protocols except U-SAP, and in GB4 with SAU and S-SAP. After aging, GB4/S-SAP, GB2/S-SAP, AB2/U-SAP, and TSC/S-SAP showed the highest bond strength. GB groups showed the lowest surface roughness and highest surface energy.

Conclusion

Glass bead abrasion achieved the durable bond strength to high-translucent zirconia using a separate silane coupling agent while altered surface chemistry, surface energy, and roughness without effect on morphology.

Clinical relevance

Glass bead air abrasion is an alternative to alumina sandblasting and tribochemical silica coating and improves bond strength to high translucent zirconia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Denry I, Kelly JR (2008) State of the art of zirconia for dental applications. Dent Mater 24:299–307. https://doi.org/10.1016/j.dental.2007.05.007

    Article  PubMed  Google Scholar 

  2. Zhang Y, Lawn BR (2018) Novel zirconia materials in dentistry. J Dent Res 97:140–147. https://doi.org/10.1177/0022034517737483

    Article  PubMed  Google Scholar 

  3. Zhang F, Reveron H, Spies BC, Van Meerbeek B, Chevalier J (2019) Trade-off between fracture resistance and translucency of zirconia and lithium-disilicate glass ceramics for monolithic restorations. Acta Biomater 91:24–34. https://doi.org/10.1016/j.actbio.2019.04.043

    Article  PubMed  Google Scholar 

  4. Zhang F, Inokoshi M, Batuk M, Hadermann J, Naert I, Van Meerbeek B et al (2016) Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations. Dent Mater 32:e327–e337. https://doi.org/10.1016/j.dental.2016.09.025

    Article  PubMed  Google Scholar 

  5. Zhang Y (2014) Making yttria-stabilized tetragonal zirconia translucent. Dent Mater 30:1195–1203. https://doi.org/10.1016/j.dental.2014.08.375

    Article  PubMed  PubMed Central  Google Scholar 

  6. Pereira GKR, Guilardi LF, Dapieve KS, Kleverlaan CJ, Rippe MP, Valandro LF (2018) Mechanical reliability, fatigue strength and survival analysis of new polycrystalline translucent zirconia ceramics for monolithic restorations. J Mech Behav Biomed Mater 85:57–65. https://doi.org/10.1016/j.jmbbm.2018.05.029

    Article  PubMed  Google Scholar 

  7. Inokoshi M, Shimizu H, Nozaki K, Takagaki T, Yoshihara K, Nagaoka N et al (2018) Crystallographic and morphological analysis of sandblasted highly translucent dental zirconia. Dent Mater 34:508–518. https://doi.org/10.1016/j.dental.2017.12.008

    Article  PubMed  Google Scholar 

  8. Blatz MB, Sadan A, Kern M (2003) Resin-ceramic bonding: a review of the literature. J Prosthet Dent 89:268–274. https://doi.org/10.1067/mpr.2003.50

    Article  PubMed  Google Scholar 

  9. Kern M, Wegner SM (1998) Bonding to zirconia ceramic: adhesion methods and their durability. Dent Mater 14:64–71. https://doi.org/10.1016/S0109-5641(98)00011-6

    Article  PubMed  Google Scholar 

  10. Özcan M, Bernasconi M (2015) Adhesion to zirconia used for dental restorations: a systematic review and meta-analysis. J Adhes Dent 17:7–26. https://doi.org/10.3290/j.jad.a33525

    Article  PubMed  Google Scholar 

  11. Piascik JR, Swift EJ, Thompson JY, Grego S, Stoner BR (2009) Surface modification for enhanced silanation of zirconia ceramics. Dent Mater 25:1116–1121. https://doi.org/10.1016/j.dental.2009.03.008

    Article  PubMed  PubMed Central  Google Scholar 

  12. Derand T, Molin M, Kvam K (2005) Bond strength of composite luting cement to zirconia ceramic surfaces. Dent Mater 21:1158–1162. https://doi.org/10.1016/j.dental.2005.02.005

    Article  PubMed  Google Scholar 

  13. Passos SP, May LG, Barca DC, Özcan M, Bottino MA, Valandro LF (2010) Adhesive quality of self-adhesive and conventional adhesive resin cement to Y-TZP ceramic before and after aging conditions. Oper Dent 35:689–696. https://doi.org/10.2341/10-157-L

    Article  PubMed  Google Scholar 

  14. Matinlinna JP, Heikkinen T, Özcan M, Lassila LVJ, Vallittu PK (2006) Evaluation of resin adhesion to zirconia ceramic using some organosilanes. Dent Mater 22:824–831. https://doi.org/10.1016/j.dental.2005.11.035

    Article  PubMed  Google Scholar 

  15. Lin J, Shinya A, Gomi H, Shinya A (2010) Effect of self-adhesive resin cement and tribochemical treatment on bond strength to zirconia. Int J Oral Sci 2:28–34. https://doi.org/10.4248/IJOS10002

    Article  PubMed  PubMed Central  Google Scholar 

  16. Inokoshi M, De Munck J, Minakuchi S, Van Meerbeek B (2014) Meta-analysis of bonding effectiveness to zirconia ceramics. J Dent Res 93:329–334. https://doi.org/10.1177/0022034514524228

    Article  PubMed  Google Scholar 

  17. Thammajaruk P, Inokoshi M, Chong S, Guazzato M (2018) Bonding of composite cements to zirconia: a systematic review and meta-analysis of in vitro studies. J Mech Behav Biomed Mater 80:258–268. https://doi.org/10.1016/j.jmbbm.2018.02.008

    Article  PubMed  Google Scholar 

  18. Hallmann L, Ulmer P, Wille S, Polonskyi O, Köbel S, Trottenberg T et al (2016) Effect of surface treatments on the properties and morphological change of dental zirconia. J Prosthet Dent 115:341–349. https://doi.org/10.1016/j.prosdent.2015.09.007

    Article  PubMed  Google Scholar 

  19. Hallmann L, Ulmer P, Lehmann F, Wille S, Polonskyi O, Johannes M et al (2016) Effect of surface modifications on the bond strength of zirconia ceramic with resin cement resin. Dent Mater 32:631–639. https://doi.org/10.1016/j.dental.2016.02.001

    Article  PubMed  Google Scholar 

  20. Nishigawa G, Maruo Y, Irie M, Oka M, Yoshihara K, Minagi S et al (2008) Ultrasonic cleaning of silica-coated zirconia influences bond strength between zirconia and resin luting material. Dent Mater J 27:842–848. https://doi.org/10.4012/dmj.27.842

    Article  PubMed  Google Scholar 

  21. Chen C, Chen G, Xie H, Dai W, Zhang F (2013) Nanosilica coating for bonding improvements to zirconia. Int J Nanomedicine 8:4053–4062. https://doi.org/10.2147/IJN.S52145

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bielen V, Inokoshi M, De MJ, Zhang F, Vanmeensel K, Minakuchi S et al (2015) Bonding effectiveness to differently sandblasted dental zirconia. J Adhes Dent 17:235–242. https://doi.org/10.3290/j.jad.a34401

    Article  PubMed  Google Scholar 

  23. Inokoshi M, Kameyama A, De Munck J, Minakuchi S, Van Meerbeek B (2013) Durable bonding to mechanically and/or chemically pre-treated dental zirconia. J Dent 41:170–179. https://doi.org/10.1016/j.jdent.2012.10.017

    Article  PubMed  Google Scholar 

  24. Zhao P, Yu P, Xiong Y, Yue L, Arola D, Gao S (2020) Does the bond strength of highly translucent zirconia show a different dependence on the airborne-particle abrasion parameters in comparison to conventional zirconia? J Prosthodont Res 64:60–70. https://doi.org/10.1016/j.jpor.2019.04.008

    Article  PubMed  Google Scholar 

  25. Inokoshi M, Shimizubata M, Nozaki K, Takagaki T, Yoshihara K, Minakuchi S et al (2021) Impact of sandblasting on the flexural strength of highly translucent zirconia. J Mech Behav Biomed Mater 115:104268. https://doi.org/10.1016/j.jmbbm.2020.104268

    Article  PubMed  Google Scholar 

  26. Manso AP, Carvalho RM (2017) Dental cements for luting and bonding restorations. Dent Clin North Am 61:821–834. https://doi.org/10.1016/j.cden.2017.06.006

    Article  PubMed  Google Scholar 

  27. Xie H, Li Q, Zhang F, Lu Y, Tay FR, Qian M et al (2016) Comparison of resin bonding improvements to zirconia between one-bottle universal adhesives and tribochemical silica coating, which is better? Dent Mater 32:403–411. https://doi.org/10.1016/j.dental.2015.12.014

    Article  PubMed  Google Scholar 

  28. Combe EC, Owen BA, Hodges JS (2004) A protocol for determining the surface free energy of dental materials. Dent Mater 20:262–268. https://doi.org/10.1016/S0109-5641(03)00102-7

    Article  PubMed  Google Scholar 

  29. Cattani Lorente M, Scherrer SS, Richard J, Demellayer R, Amez-Droz M, Wiskott HWA (2010) Surface roughness and EDS characterization of a Y-TZP dental ceramic treated with the CoJetTM Sand. Dent Mater 26:1035–1042. https://doi.org/10.1016/j.dental.2010.06.005

    Article  PubMed  Google Scholar 

  30. Matinlinna JP, Vallittu PK (2007) Bonding of resin composites to etchable ceramic surfaces - an insight review of the chemical aspects on surface conditioning. J Oral Rehabil 34:622–630. https://doi.org/10.1111/j.1365-2842.2005.01569.x

    Article  PubMed  Google Scholar 

  31. Della Bona A, Chiayi S, Kenneth JA (2004) Work of adhesion of resin on treated lithia disilicate-based ceramic. Dent Mater 20:338–344. https://doi.org/10.1016/S0109-5641(03)00126-X

    Article  PubMed  Google Scholar 

  32. Khan AA, Mohamed BA, Mirza EH, Syed J, Divakar DD, Vallittu PK (2019) Surface wettability and nano roughness at different grit blasting operational pressures and their effects on resin cement to zirconia adhesion. Dent Mater J 38:388–395. https://doi.org/10.4012/dmj.2018-137

    Article  PubMed  Google Scholar 

  33. Eckstein UR, Detsch R, Khansur NH, Brehl M, Deisinger U, de Ligny D et al (2019) Bioactive glass coating using aerosol deposition. Ceram Int 45:14728–14732. https://doi.org/10.1016/j.ceramint.2019.04.197

    Article  Google Scholar 

  34. Heikkinen TT, Lassila LVJ, Matinlinna JP, Vallittu PK (2007) Effect of operating air pressure on tribochemical silica-coating. Acta Odontol Scand 65:241–248. https://doi.org/10.1080/00016350701459753

    Article  PubMed  Google Scholar 

  35. Rayner GB, Kang D, Lucovsky G (2003) Spectroscopic study of chemical phase separation in zirconium silicate alloys. J Vac Sci Technol B Microelectron Nanom Struct 21:1783. https://doi.org/10.1116/1.1593646

    Article  Google Scholar 

  36. Nagaoka N, Yoshihara K, Feitosa VP, Tamada Y, Irie M, Yoshida Y et al (2017) Chemical interaction mechanism of 10-MDP with zirconia. Sci Rep 7:45563. https://doi.org/10.1038/srep45563

    Article  PubMed  PubMed Central  Google Scholar 

  37. Shimoe S, Hirata I, Otaku M, Matsumura H, Kato K, Satoda T (2018) Formation of chemical bonds on zirconia surfaces with acidic functional monomers. J Oral Sci 60:187–193

    Article  Google Scholar 

  38. Amaral M, Belli R, Cesar PF, Valandro LF, Petschelt A, Lohbauer U (2014) The potential of novel primers and universal adhesives to bond to zirconia. J Dent 42:90–98. https://doi.org/10.1016/j.jdent.2013.11.004

    Article  PubMed  Google Scholar 

  39. Seabra B, Arantes-Oliveira S, Portugal J (2014) Influence of multimode universal adhesives and zirconia primer application techniques on zirconia repair. J Prosthet Dent 112:182–187. https://doi.org/10.1016/j.prosdent.2013.10.008

    Article  PubMed  Google Scholar 

  40. Kim JH, Chae SY, Lee Y, Han GJ, Cho BH (2015) Effects of multipurpose, universal adhesives on resin bonding to zirconia ceramic. Oper Dent 40:55–62. https://doi.org/10.2341/13-303-L

    Article  PubMed  Google Scholar 

  41. Yue X, Hou X, Gao J, Bao P, Shen J (2019) Effects of MDP-based primers on shear bond strength between resin cement and zirconia. Exp Ther Med 17:3564–72. https://doi.org/10.3892/etm.2019.7382

    Article  PubMed  PubMed Central  Google Scholar 

  42. da Silva EM, Miragaya L, Sabrosa CE, Maia LC (2014) Stability of the bond between two resin cements and an yttria-stabilized zirconia ceramic after six months of aging in water. J Prosthet Dent 112:568–575. https://doi.org/10.1016/j.prosdent.2013.12.003

    Article  PubMed  Google Scholar 

  43. Sonza QN, Bertol CD, Bona AD, Borba M (2018) Sorption and solubility of different resin cements. Dent Mater 34:114–115. https://doi.org/10.1016/j.dental.2018.08.240

    Article  Google Scholar 

  44. Chen C, Chen Y, Lu Z, Qian M, Xie H, Tay FR (2017) The effects of water on degradation of the zirconia-resin bond. J Dent 64:23–29. https://doi.org/10.1016/j.jdent.2017.04.004

    Article  PubMed  Google Scholar 

  45. de Oyagüe RC, Monticelli F, Toledano M, Osorio E, Ferrari M, Osorio R (2009) Influence of surface treatments and resin cement selection on bonding to densely-sintered zirconium-oxide ceramic. Dent Mater 25:172–179. https://doi.org/10.1016/j.dental.2008.05.012

    Article  PubMed  Google Scholar 

  46. Yoshihara K, Nagaoka N, Maruo Y, Nishigawa G, Yoshida Y, Van Meerbeek B (2020) Silane-coupling effect of a silane-containing self-adhesive composite cement. Dent Mater 36:914–926. https://doi.org/10.1016/j.dental.2020.04.014

    Article  PubMed  Google Scholar 

  47. Yoshihara K, Nagaoka N, Sonoda A, Maruo Y, Makita Y, Okihara T et al (2016) Effectiveness and stability of silane coupling agent incorporated in ‘universal’ adhesives. Dent Mater 32:1218–1225. https://doi.org/10.1016/j.dental.2016.07.002

    Article  PubMed  Google Scholar 

  48. Yao C, Yu J, Wang Y, Tang C, Huang C (2018) Acidic pH weakens the bonding effectiveness of silane contained in universal adhesives. Dent Mater 34:809–818. https://doi.org/10.1016/j.dental.2018.02.004

    Article  PubMed  Google Scholar 

  49. Moreno MBP, Murillo-Gómez F, de Goes MF (2019) Physicochemical and morphological characterization of a glass ceramic treated with different ceramic primers and post-silanization protocols. Dent Mater 35:1073–1081. https://doi.org/10.1016/j.dental.2019.05.003

    Article  PubMed  Google Scholar 

  50. Chen B, Lu Z, Meng H, Chen Y, Yang L, Zhang H et al (2019) Effectiveness of pre-silanization in improving bond performance of universal adhesives or self-adhesive resin cements to silica-based ceramics: chemical and in vitro evidences. Dent Mater 35:543–553. https://doi.org/10.1016/j.dental.2019.01.010

    Article  PubMed  Google Scholar 

  51. Koko M, Takagaki T, Abdou A, Inokoshi M, Ikeda M, Wada T et al (2020) Effects of the ratio of silane to 10-methacryloyloxydecyl dihydrogenphosphate (MDP) in primer on bonding performance of silica-based and zirconia ceramics. J Mech Behav Biomed Mater 112:104026. https://doi.org/10.1016/j.jmbbm.2020.104026

    Article  PubMed  Google Scholar 

  52. Lima RBW, Barreto SC, Hajhamid B, de Souza GM, de Goes MF (2019) Effect of cleaning protocol on silica deposition and silica-mediated bonding to Y-TZP. Dent Mater 35:1603–1613. https://doi.org/10.1016/j.dental.2019.08.099

    Article  PubMed  Google Scholar 

  53. Lima RBW, Barreto SC, Alfrisany NM, Porto TS, De Souza GM, De Goes MF (2019) Effect of silane and MDP-based primers on physico-chemical properties of zirconia and its bond strength to resin cement. Dent Mater 35:1557–1567. https://doi.org/10.1016/j.dental.2019.07.008

    Article  PubMed  Google Scholar 

  54. Chuang SF, Kang LL, Liu YC, Lin JC, Wang CC, Chen HM et al (2017) Effects of silane and MDP-based primers application orders on zirconia–resin adhesion—a ToF-SIMS study. Dent Mater 33:923–933. https://doi.org/10.1016/j.dental.2017.04.027

    Article  PubMed  Google Scholar 

  55. Lyubomirova V, Šmit Ž, Fajfar H, Kuleff I (2014) Chemical composition of glass beads from the necropolis of apollonia pontica (5th-3rd Century BC). Archaeol Bulg 18:1–15

    Google Scholar 

  56. Yoshihara K, Nagaoka N, Okihara T, Kuroboshi M, Hayakawa S, Maruo Y et al (2015) Functional monomer impurity affects adhesive performance. Dent Mater 31:1493–1501. https://doi.org/10.1016/j.dental.2015.09.019

    Article  PubMed  Google Scholar 

  57. Koko M, Takagaki T, Abdou A, Wada T, Nikaido T, Tagami J (2021) Influence of 10-methacryloyloxydecyl dihydrogen phosphate (MDP) incorporated experimental cleaners on the bonding performance of saliva-contaminated zirconia ceramic. Clin Oral Investig. https://doi.org/10.1007/s00784-021-04153-7

    Article  PubMed  Google Scholar 

  58. Abdou A, Takagaki T, Alghamdi A, Tichy A, Nikaido T, Tagami J (2020) Bonding performance of dispersed filler resin composite CAD/CAM blocks with different surface treatment protocols. Dent Mater J 40:209–219. https://doi.org/10.4012/dmj.2020-049

    Article  PubMed  Google Scholar 

  59. Khanlar LN, Takagaki T, Abdou A, Inokoshi M, Ikeda M, Takahashi A et al (2021) Effect of air-particle abrasion protocol and primer on the topography and bond strength of a high-translucent zirconia ceramic. J Prosthodont. https://doi.org/10.1111/jopr.13372

    Article  PubMed  Google Scholar 

  60. Mehari K, Parke AS, Gallardo FF, Vandewalle KS (2020) Assessing the effects of air abrasion with aluminum oxide or glass beads to zirconia on the bond strength of cement. J Contemp Dent Pract 21:713–717. https://doi.org/10.5005/jp-journals-10024-2879

    Article  PubMed  Google Scholar 

  61. Lopes FC, Palma-Dibb RG, Campi LB, Roselino RF, Gomes ÉA, Canevese VA et al (2018) Surface topography and bond strength of CAD–CAM milled zirconia ceramic luted onto human dentin: effect of surface treatments before and after sintering. Appl Adhes Sci 6:8. https://doi.org/10.1186/s40563-018-0110-7

    Article  Google Scholar 

  62. Sulaiman TA, Abdulmajeed AA, Shahramian K, Lassila L (2017) Effect of different treatments on the flexural strength of fully versus partially stabilized monolithic zirconia. J Prosthet Dent 118:216–220. https://doi.org/10.1016/j.prosdent.2016.10.031

    Article  PubMed  Google Scholar 

  63. Hallmann L, Ulmer P, Reusser E, Hämmerle CHF (2012) Surface characterization of dental Y-TZP ceramic after air abrasion treatment. J Dent 40:723–735. https://doi.org/10.1016/j.jdent.2012.05.003

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Kuraray Noritake Dental for supplying the materials.

Funding

This work was supported by the JPSP Grant-in-Aid for Science Research (grant number 17K11701) in Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leila Nasiry Khanlar.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

For this type of study, formal consent is not required.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khanlar, L.N., Abdou, A., Takagaki, T. et al. The effects of different silicatization and silanization protocols on the bond durability of resin cements to new high-translucent zirconia. Clin Oral Invest 26, 3547–3561 (2022). https://doi.org/10.1007/s00784-021-04323-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-021-04323-7

Keywords

Navigation