Skip to main content

Advertisement

Log in

Odontogenesis-related candidate genes involved in variations of permanent teeth size

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objective

The aim of the study was to evaluate the association between genetic polymorphisms in RUNX2, BMP4, BMP2, TGFβ1, EGF, and SMAD6 and variations in permanent tooth size (TS).

Materials and methods

This cross-sectional study evaluated 110 individuals’ dental casts to determine the maximum tooth crown size of all fully erupted permanent teeth (third molars were excluded) in the mesiodistal (MD) and buccolingual (BL) dimensions. Genomic DNA was obtained from the epithelial cells of the oral mucosa to evaluate the genetic polymorphisms in RUNX2 (rs59983488 and rs1200425), BMP4 (rs17563), BMP2 (rs235768 and rs1005464), TGFβ1 (rs1800470), EGF (rs4444903), and SMAD6 (rs2119261 and rs3934908) through real-time PCR. The data were submitted to statistical analysis with a significance level of 0.05.

Results

The genetic polymorphisms rs59983488, rs1200425, rs17563, rs235768, rs1005464, rs1800470, and rs4444903 were associated with MD and BL TS of the upper and lower arches (p < 0.05). The polymorphism rs2119261 was associated with variation in TS only in the upper arch (p < 0.05). The rs3934908 was not associated with any TS measurement (p > 0.05).

Conclusions

In summary, this study reports novel associations between variation in permanent TS and genetic polymorphisms in RUNX2, BMP4, BMP2, TGFβ1, EGF, and SMAD6 indicating a possible role of these genes in dental morphology.

Clinical relevance

Polymorphisms in odontogenesis-related genes may be involved in dental morphology enabling a prediction of permanent TS variability. The knowledge regarding genes involved in TS might impact the personalized dental treatment, considering that patients’ genetic profile would soon be introduced into clinical practice to improve patient management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Schwartz GT, Dean MC (2005) Sexual dimorphism in modern human permanent teeth. Am J Phys Anthropol 128:312–317. https://doi.org/10.1002/ajpa.20211

    Article  PubMed  Google Scholar 

  2. de Saboia TM, Kuchler EC, Tannure PN, Rey AC, Granjeiro JM, de Castro CM, Vieira AR (2013) Mesio-distal and buccal-lingual tooth dimensions are part of the cleft spectrum: a pilot for future genetic studies. Cleft Palate Craniofac J 50:678–683. https://doi.org/10.1597/11-228

    Article  PubMed  Google Scholar 

  3. Brook AH (2009) Multilevel complex interactions between genetic, epigenetic and environmental factors in the aetiology of anomalies of dental development. Arch Oral Biol 54:S3–S17. https://doi.org/10.1016/j.archoralbio.2009.09.005

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cunha AS, Dos Santos LV, Marañón-Vásquez GA, Kirschneck C, Gerber JT, Stuani MB, Matsumoto MAN, Vieira AR, Scariot R, Küchler EC (2020) Genetic variants in tooth agenesis-related genes might be also involved in tooth size variations. Clin Oral Investig. https://doi.org/10.1007/s00784-020-03437-8

  5. Cunha AS, Vertuan Dos Santos L, Schaffer Pugsley Baratto S, Abbasoglu Z, Gerber JT, Paza A, Matsumoto MAN, Scariot R, Stuani MB, Küchler EC (2020) Human permanent tooth sizes are associated with genes encoding oestrogen receptors. J Orthod 28:1465312520958710. https://doi.org/10.1177/1465312520958710

    Article  Google Scholar 

  6. Caton J, Tucker AS (2009) Current knowledge of tooth development: patterning and mineralization of the murine dentition. J Anat 214:502–515. https://doi.org/10.1111/j.1469-7580.2008.01014.x

    Article  PubMed  PubMed Central  Google Scholar 

  7. Galluccio G, Castellano M, La Monaca C (2012) Genetic basis of non-syndromic anomalies of human tooth number. Arch Oral Biol 57:918–930. https://doi.org/10.1016/j.archoralbio.2012.01.005

    Article  PubMed  Google Scholar 

  8. Chattopadhyay A, Srinivas K (1996) Transposition of teeth and genetic etiology. Angle Orthod 66:147–152. https://doi.org/10.1043/0003-3219(1996)066<0147:TOTAGE>2.3.CO;2

    Article  PubMed  Google Scholar 

  9. Cobourne MT, Sharpe PT (2010) Making up the numbers: the molecular control of mammalian dental formula. Semin Cell Dev Biol 21:314–324. https://doi.org/10.1016/j.semcdb.2010.01.007

    Article  PubMed  Google Scholar 

  10. Jernvall J, Thesleff I (2012) Tooth shape formation and tooth renewal: evolving with the same signals. Development 139:3487–3497. https://doi.org/10.1242/dev.085084

    Article  PubMed  Google Scholar 

  11. Dempsey PJ, Townsend GC (2001) Genetic and environmental contributions to variation in human tooth size. Heredity (Edinb) 86:685–693. https://doi.org/10.1046/j.1365-2540.2001.00878.x

    Article  Google Scholar 

  12. Miletich I, Sharpe PT (2003) Normal and abnormal dental development. Hum Mol Genet 12 Spec No 1:R69–R73. https://doi.org/10.1093/hmg/ddg085

    Article  PubMed  Google Scholar 

  13. Hata A, Lagna G, Massague J, Hemmati-Brivanlou A (1998) Smad6 inhibits BMP/Smad1 signaling by specifically competing with the Smad4 tumor suppressor. Genes Dev 12:186–197. https://doi.org/10.1101/gad.12.2.186

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mitsiadis TA, Muramatsu T, Muramatsu H, Thesleff I (1995) Midkine (MK), a heparin-binding growth/differentiation factor, is regulated by retinoic acid and epithelial-mesenchymal interactions in the developing mouse tooth, and affects cell proliferation and morphogenesis. J Cell Biol 129:267–281. https://doi.org/10.1083/jcb.129.1.267

    Article  PubMed  Google Scholar 

  15. Thesleff I (2003) Epithelial-mesenchymal signalling regulating tooth morphogenesis. J Cell Sci 116:1647–1648. https://doi.org/10.1242/jcs.00410

    Article  Google Scholar 

  16. Chen S, Gluhak-Heinrich J, Wang YH, Wu YM, Chuang HH, Chen L, Yuan GH, Dong J, Gay I, MacDougall M (2009) Runx2, osx, and dspp in tooth development. J Dent Res 88:904–909. https://doi.org/10.1177/0022034509342873

    Article  PubMed  PubMed Central  Google Scholar 

  17. Plikus MV, Zeichner-David M, Mayer JA, Reyna J, Bringas P, Thewissen JG, Snead ML, Chai Y, Chuong CM (2005) Morphoregulation of teeth: modulating the number, size, shape and differentiation by tuning Bmp activity. Evol Dev 7:440–457. https://doi.org/10.1111/j.1525-142X.2005.05048.x

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhao H, Oka K, Bringas P, Kaartinen V, Chai Y (2008) TGF-beta type I receptor Alk5 regulates tooth initiation and mandible patterning in a type II receptor-independent manner. Dev Biol 320:19–29. https://doi.org/10.1016/j.ydbio.2008.03.045

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhao H, Li S, Han D, Kaartinen V, Chai Y (2011) Alk5-mediated transforming growth factor beta signaling acts upstream of fibroblast growth factor 10 to regulate the proliferation and maintenance of dental epithelial stem cells. Mol Cell Biol 31:2079–2089. https://doi.org/10.1128/MCB.01439-10

    Article  PubMed  PubMed Central  Google Scholar 

  20. Smith AJ, Matthews JB, Hall RC (1998) Transforming growth factor-beta1 (TGF-beta1) in dentine matrix. Ligand activation and receptor expression. Eur J Oral Sci 106(Suppl 1):179–184. https://doi.org/10.1111/j.1600-0722.1998.tb02173.x

    Article  PubMed  Google Scholar 

  21. Niwa T, Yamakoshi Y, Yamazaki H, Karakida T, Chiba R, Hu J, Nagano T, Yamamoto R, Simmer J, Gomi K (2018) The dynamics of TGF-β in dental pulp, odontoblasts and dentin. Sci Rep 8:4450. https://doi.org/10.1038/s41598-018-22823-7

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kronmiller JE (1995) Spatial distribution of epidermal growth-factor transcripts and effects of exogenous epidermal growth factor on the pattern of the mouse dental lamina. Arch Oral Biol 40:137–143. https://doi.org/10.1016/0003-9969(94)00143-y

    Article  PubMed  Google Scholar 

  23. Derynck R (1986) Transforming growth factor-alpha: structure and biological activities. J Cell Biochem 32:293–304. https://doi.org/10.1002/jcb.240320406

    Article  PubMed  Google Scholar 

  24. Xu X, Jeong L, Han J, Ito Y, Bringas P Jr, Chai Y (2003) Developmental expression of Smad1-7 suggests critical function of TGF-beta/BMP signaling in regulating epithelial-mesenchymal interaction during tooth morphogenesis. Int J Dev Biol 47:31–9. 10.1387/14

  25. Wang Y, Li L, Zheng Y, Yuan G, Yang G, He F, Chen Y (2012) BMP activity is required for tooth development from the lamina to bud stage. Journal of dental research 91:695. https://doi.org/10.1177/0022034512448660

    Article  Google Scholar 

  26. Kuchler EC, Menezes R, Callahan N, Costa MC, Modesto A, Meira R, Patir A, Seymen F, Paiva KB, Nunes FD, Granjeiro JM, Vieira AR (2011) MMP1 and MMP20 contribute to tooth agenesis in humans. Arch Oral Biol 56:506–511. https://doi.org/10.1016/j.archoralbio.2010.11.007

    Article  PubMed  Google Scholar 

  27. Antunes Ldos S, Kuchler EC, Tannure PN, Lotsch PF, Costa Mde C, Gouvea CV, Olej B, Granjeiro JM (2012) TGFB3 and BMP4 polymorphism are associated with isolated tooth agenesis. Acta Odontol Scand 70:202–206. https://doi.org/10.3109/00016357.2011.629626

    Article  PubMed  Google Scholar 

  28. Antunes LS, Kuchler EC, Tannure PN, Dias JB, Ribeiro VN, Lips A, Costa MC, Antunes LA, Granjeiro JM (2013) Genetic variations in MMP9 and MMP13 contribute to tooth agenesis in a Brazilian population. J Oral Sci 55:281–286. https://doi.org/10.2334/josnusd.55.281

    Article  PubMed  Google Scholar 

  29. Vieira AR, D'Souza RN, Mues G, Deeley K, Hsin HY, Kuchler EC, Meira R, Patir A, Tannure PN, Lips A, Costa MC, Granjeiro JM, Seymen F, Modesto A (2013) Candidate gene studies in hypodontia suggest role for FGF3. Eur Arch Paediatr Dent 14:405–410. https://doi.org/10.1007/s40368-013-0010-2

    Article  PubMed  Google Scholar 

  30. Arid J, Oliveira DB, Evangelista SS, Vasconcelos KRF, Dutra ALT, de Oliveira SS, de Queiroz AM, Nelson-Filho P, Vieira AR, Kuchler EC (2019) Oestrogen receptor alpha, growth hormone receptor, and developmental defect of enamel. Int J Paediatr Dent 29:29–35. https://doi.org/10.1111/ipd.12434

    Article  PubMed  Google Scholar 

  31. Lee WC, Yamaguchi T, Watanabe C, Kawaguchi A, Takeda M, Kim YI, Haga S, Tomoyasu Y, Ishida H, Maki K, Park SB, Kimura R (2012) Association of common PAX9 variants with permanent tooth size variation in non-syndromic East Asian populations. J Hum Genet 57:654–659. https://doi.org/10.1038/jhg.2012.90

    Article  PubMed  Google Scholar 

  32. Daubert DM, Kelley JL, Udod YG, Habor C, Kleist CG, Furman IK, Tikonov IN, Swanson WJ, Roberts FA (2016) Human enamel thickness and ENAM polymorphism. Int J Oral Sci 8:93–97. https://doi.org/10.1038/ijos.2016.1

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kirac D, Eraydin F, Avcilar T, Ulucan K, Ozdemir F, Guney AI, Kaspar EC, Keshi E, Isbir T (2016) Effects of PAX9 and MSX1 gene variants to hypodontia, tooth size and the type of congenitally missing teeth. Cell Mol Biol (Noisy-le-grand) 62:78–84. https://doi.org/10.14715/cmb/2016.62.13.14

    Article  Google Scholar 

  34. Stojanowski CM, Paul KS, Seidel AC, Duncan WN, Guatelli-Steinberg D (2017) Heritability and genetic integration of tooth size in the South Carolina Gullah. Am J Phys Anthropol 164:505–521. https://doi.org/10.1002/ajpa.23290

    Article  PubMed  Google Scholar 

  35. Little J, Higgins JP, Ioannidis JP, Moher D, Gagnon F, von Elm E, Khoury MJ, Cohen B, Davey-Smith G, Grimshaw J, Scheet P, Gwinn M, Williamson RE, Zou GY, Hutchings K, Johnson CY, Tait V, Wiens M, Golding J, van Duijn C, McLaughlin J, Paterson A, Wells G, Fortier I, Freedman M, Zecevic M, King R, Infante-Rivard C, Stewart AF, Birkett N (2009) Strengthening the reporting of genetic association studies (STREGA): an extension of the strengthening the reporting of observational studies in epidemiology (STROBE) statement. J Clin Epidemiol 62:597–608 e4. https://doi.org/10.1016/j.jclinepi.2008.12.004

    Article  PubMed  Google Scholar 

  36. Sullivan KM, Dean A, Soe MM (2009) OpenEpi: a web-based epidemiologic and statistical calculator for public health. Public Health Rep 124:471–474. https://doi.org/10.1177/003335490912400320

    Article  PubMed  PubMed Central  Google Scholar 

  37. Moorrees CF, Reed RB (1964) Correlations among crown diameters of human teeth. Arch Oral Biol 9:685–697. https://doi.org/10.1016/0003-9969(64)90080-9

    Article  PubMed  Google Scholar 

  38. Trevilatto PC, Line SR (2000) Use of buccal epithelial cells for PCR amplification of large DNA fragments. J Forensic Odontostomatol 18:6–9

    PubMed  Google Scholar 

  39. Aidar M, Line SR (2007) A simple and cost-effective protocol for DNA isolation from buccal epithelial cells. Braz Dent J 18:148–152. https://doi.org/10.1590/s0103-64402007000200012

    Article  PubMed  Google Scholar 

  40. Agenter MK, Harris EF, Blair RN (2009) Influence of tooth crown size on malocclusion. Am J Orthod Dentofac Orthop 136:795–804. https://doi.org/10.1016/j.ajodo.2007.12.030

    Article  Google Scholar 

  41. Puri N, Pradhan KL, Chandna A, Sehgal V, Gupta R (2007) Biometric study of tooth size in normal, crowded, and spaced permanent dentitions. Am J Orthod Dentofac Orthop 132(279):e7–e14. https://doi.org/10.1016/j.ajodo.2007.01.018

    Article  Google Scholar 

  42. Zhang YD, Chen Z, Song YQ, Liu C, Chen YP (2005) Making a tooth: growth factors, transcription factors, and stem cells. Cell Res 15:301–316. https://doi.org/10.1038/sj.cr.7290299

    Article  PubMed  Google Scholar 

  43. Lu Y, Qian Y, Zhang J, Gong M, Wang Y, Gu N, Ma L, Xu M, Ma J, Zhang W, Pan Y, Wang L (2016) Genetic variants of BMP2 and their association with the risk of non-syndromic tooth agenesis. PLoS One 11:e0158273. https://doi.org/10.1371/journal.pone.0158273

    Article  PubMed  PubMed Central  Google Scholar 

  44. Tasli PN, Aydin S, Yalvac ME, Sahin F (2014) Bmp 2 and bmp 7 induce odonto- and osteogenesis of human tooth germ stem cells. Appl Biochem Biotechnol 172:3016–3025. https://doi.org/10.1007/s12010-013-0706-0

    Article  PubMed  Google Scholar 

  45. Jia S, Zhou J, Gao Y, Baek JA, Martin JF, Lan Y, Jiang R (2013) Roles of Bmp4 during tooth morphogenesis and sequential tooth formation. Development 140:423–432. https://doi.org/10.1242/dev.081927

    Article  PubMed  PubMed Central  Google Scholar 

  46. Maas R, Bei M (1997) The genetic control of early tooth development. Crit Rev Oral Biol Med 8:4–39. https://doi.org/10.1177/10454411970080010101

    Article  PubMed  Google Scholar 

  47. Aberg T, Wozney J, Thesleff I (1997) Expression patterns of bone morphogenetic proteins (Bmps) in the developing mouse tooth suggest roles in morphogenesis and cell differentiation. Dev Dyn 210:383–396. https://doi.org/10.1002/(SICI)1097-0177(199712)210:4<383::AID-AJA3>3.0.CO;2-C

    Article  PubMed  Google Scholar 

  48. Lan Y, Jia S, Jiang R (2014) Molecular patterning of the mammalian dentition. Semin Cell Dev Biol 25-26:61–70. https://doi.org/10.1016/j.semcdb.2013.12.003

    Article  PubMed  Google Scholar 

  49. Oka S, Oka K, Xu X, Sasaki T, Bringas P Jr, Chai Y (2007) Cell autonomous requirement for TGF-beta signaling during odontoblast differentiation and dentin matrix formation. Mech Dev 124:409–415. https://doi.org/10.1016/j.mod.2007.02.003

    Article  PubMed  PubMed Central  Google Scholar 

  50. Song W, Wang Y, Chu Q, Qi C, Gao Y, Gao Y, Xiang L, Zhenzhen X, Gao Y (2018) Loss of transforming growth factor-beta1 in epithelium cells affects enamel formation in mice. Arch Oral Biol 96:146–154. https://doi.org/10.1016/j.archoralbio.2018.09.003

    Article  PubMed  Google Scholar 

  51. Huang X, Chai Y (2010) TGF-ß signaling and tooth development. The Chinese journal of dental research 13

  52. Partanen AM, Ekblom P, Thesleff I (1985) Epidermal growth factor inhibits morphogenesis and cell differentiation in cultured mouse embryonic teeth. Dev Biol 111:84–94. https://doi.org/10.1016/0012-1606(85)90437-3

    Article  PubMed  Google Scholar 

  53. Partanen AM, Thesleff I (1987) Localization and quantitation of 125I-epidermal growth factor binding in mouse embryonic tooth and other embryonic tissues at different developmental stages. Dev Biol 120:186–197. https://doi.org/10.1016/0012-1606(87)90117-5

    Article  PubMed  Google Scholar 

  54. Cobo J, Hernandez LC, del Valle ME, Vijande M, Vega JA (1992) Immunohistochemical localization of epidermal growth factor and its receptor during odontogenesis in the rat. Eur J Orthod 14:333–338. https://doi.org/10.1093/ejo/14.5.333

    Article  PubMed  Google Scholar 

  55. D'Souza RN, Aberg T, Gaikwad J, Cavender A, Owen M, Karsenty G, Thesleff I (1999) Cbfa1 is required for epithelial-mesenchymal interactions regulating tooth development in mice. Development 126:2911–2920

    Article  Google Scholar 

  56. Ohazama A, Courtney JM, Sharpe PT (2004) Opg, Rank, and Rankl in tooth development: co-ordination of odontogenesis and osteogenesis. J Dent Res 83:241–244. https://doi.org/10.1177/154405910408300311

    Article  PubMed  Google Scholar 

  57. Aberg T, Wang XP, Kim JH, Yamashiro T, Bei M, Rice R, Ryoo HM, Thesleff I (2004) Runx2 mediates FGF signaling from epithelium to mesenchyme during tooth morphogenesis. Dev Biol 270:76–93. https://doi.org/10.1016/j.ydbio.2004.02.012

    Article  PubMed  Google Scholar 

  58. Saito K, Takahashi K, Huang B, Asahara M, Kiso H, Togo Y, Tsukamoto H, Mishima S, Nagata M, Iida M, Tokita Y, Asai M, Shimizu A, Komori T, Harada H, MacDougall M, Sugai M, Bessho K (2018) Loss of stemness, EMT, and supernumerary tooth formation in Cebpb(−/−)Runx2(+/−) murine incisors. Sci Rep 8:5169. https://doi.org/10.1038/s41598-018-23515-y

    Article  PubMed  PubMed Central  Google Scholar 

  59. Khangura Grewal R, Sircar K, Singh S, Rastogi V (2011) Sex determination using mesiodistal dimension of permanent maxillary incisors and canines. J Forensic Dent Sci 3:81–85. https://doi.org/10.4103/0975-1475.92152

    Article  Google Scholar 

  60. Guatelli-Steinberg D, Sciulli PW, Betsinger TK (2008) Dental crown size and sex hormone concentrations: another look at the development of sexual dimorphism. Am J Phys Anthropol 137:324–333. https://doi.org/10.1002/ajpa.20878

    Article  PubMed  Google Scholar 

  61. Leslie EJ, Marazita ML (2013) Genetics of cleft lip and cleft palate. Am J Med Genet C Semin Med Genet 163C:246–258. https://doi.org/10.1002/ajmg.c.31381

    Article  PubMed  Google Scholar 

  62. Amarlal D, Muthu MS (2013) Supernumerary teeth: review of literature and decision support system. Indian J Dent Res 24:117–122. https://doi.org/10.4103/0970-9290.114911

    Article  PubMed  Google Scholar 

  63. Pani SC (2011) The genetic basis of tooth agenesis: basic concepts and genes involved. J Indian Soc Pedod Prev Dent 29:84–89. https://doi.org/10.4103/0970-4388.84677

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors want to thank Lucas Ramazzotto for providing technical assistance.

Funding

This work was supported by the São Paulo Research Foundation (FAPESP) (funding number: 2015/06866-5) and individual scholarships (FAPESP and CAPES).

Author information

Authors and Affiliations

Authors

Contributions

J.T.G contributed to formal analyses, investigation, data curation, writing original draft, reviewing, and editing the manuscript; K.M.S. and B.K.B contributed to investigation and data curation; M.F.P contributed to data visualization; M.N.M performed the investigation and data curation; D.J.C. contributed to investigation and supervision; M.E contributed to writing, reviewing, and editing the manuscript; E.C.K contributed to study design, resources, funding acquisition, laboratorial analysis, and reviewing the manuscript; R.S. contributed to conceptualization, methodology, project administration, funding acquisition, and reviewing the manuscript. All authors gave final approval and agreed to account for all aspects of the work.

Corresponding author

Correspondence to Rafaela Scariot.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerber, J.T., dos Santos, K.M., Brum, B.K. et al. Odontogenesis-related candidate genes involved in variations of permanent teeth size. Clin Oral Invest 25, 4481–4494 (2021). https://doi.org/10.1007/s00784-020-03760-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-020-03760-0

Keywords

Navigation