Skip to main content

Advertisement

Log in

Do electrical current and laser therapies improve bone remodeling during an orthodontic treatment with corticotomy?

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

Evaluate the bone remodeling during orthodontic movement with corticotomy when submitted to low-intensity electrical stimulation application (microcurrent—MC) and low-level laser therapy (LLLT).

Material and methods

One hundred and fifty Wistar rats were divided into the following 5 groups: (C) submitted to tooth movement; (Cort) tooth movement/corticotomy; (Cort-L) tooth movement/corticotomy/laser AsGaAl 808 nm (4.96J/50s); (Cort-Mc) tooth movement/corticotomy/microcurrent (10 μA/5 min); (Cort-L-Mc) tooth movement/corticotomy and laser/microcurrent alternated. Inflammation, angiogenesis, and osteogenesis were evaluated in the periodontal ligament (PDL) and alveolar bone on the 7th, 14th, and 21st days of orthodontic movement.

Results

The quantification of inflammatory infiltrate, angiogenesis and expression of TGF-β1, VEGF, and collagen type I were favorably modulated by the application of therapies such as low-level laser therapy (LLLT), MC, or both combined. However, electrical stimulation increased fibroblasts, osteoclasts and RANK numbers, birefringent collagen fiber organization, and BMP-7 and IL-6 expression.

Conclusions

Low-level laser therapy (LLLT) and MC application both improved the process of bone remodeling during orthodontic treatment with corticotomy. Still, electrical current therapy promoted a more effective tooth displacement but presented expected root resorption similar to all experimental treatments.

Clinical relevance

It is important to know the effects of minimally invasive therapies on cellular and molecular elements involved in the bone remodeling of orthodontic treatment associated with corticotomy surgery, in order to reduce the adverse effects in the use of this technique and to establish a safer clinical routine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Skidmore KJ, Brook KJ, Thomson WM, Harding WJ (2006) Factors influencing treatment time in orthodontic patients. Am J Orthod Dentofac Orthop 129(2):230–238. https://doi.org/10.1016/j.ajodo.2005.10.003

    Article  Google Scholar 

  2. Jawad MM, Husein A, Alam MK, Hassan R, Shaari R (2014) Overview of non-invasive factors (low level laser and low intensity pulsed ultrasound) accelerating tooth movement during orthodontic treatment. Lasers Med Sci 29(1):367–372. https://doi.org/10.1007/s10103-012-1199-8

    Article  PubMed  Google Scholar 

  3. Sebaoun JD, Kantarci A, Turner JW, Carvalho RS, Van Dyke TE, Ferguson DJ (2008) Modeling of trabecular bone and lamina dura following selective alveolar decortication in rats. J Periodontol 79(9):1679–1688. https://doi.org/10.1902/jop.2008.080024

    Article  PubMed  PubMed Central  Google Scholar 

  4. Al-Naoum F, Hajeer MY, Al-Jundi A (2014) Does alveolar corticotomy accelerate orthodontic tooth movement when retracting upper canines? A split-mouth design randomized controlled trial. J Oral Maxillofac Surg 72(10):1880–1889. https://doi.org/10.1016/j.joms.2014.05.003

    Article  PubMed  Google Scholar 

  5. Fernández-Ferrer L, Montiel-Company JM, Candel-Martí E, Almerich-Silva JM, Peñarrocha-Diago M, Bellot-Arcís C (2016) Corticotomies as a surgical procedure to accelerate tooth movement during orthodontic treatment: a systemic review. Med Oral Patol Oral Cir Bucal 21(6):e703–e712. https://doi.org/10.4317/medoral.21208

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kim JH, Kim HW (2013) Rat defect models for bone grafts and tissue engineered bone constructs. Tissue Eng Regen Med 10(6):310–316. https://doi.org/10.1007/s13770-013-1093-x

    Article  Google Scholar 

  7. Zainal Ariffin SH, Yamamoto Z, Zainol Abidin IZ, Megat Abdul Wahab R, Zainal Ariffin Z (2011) Cellular and molecular changes in orthodontic tooth movement. Sci World J 11:1788–1803. https://doi.org/10.1100/2011/761768

    Article  Google Scholar 

  8. Meeran NA (2012) Biological response at the cellular level within the periodontal ligament on application of orthodontic force—an update. J Orthod Sci 1(1):2–10. https://doi.org/10.4103/2278-0203.94769

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sprogar S, Vaupotic T, Cör A, Drevensek M, Drevensek G (2008) The endothelin system mediates bone modeling in the late stage of orthodontic tooth movement in rats. Bone 43(4):740–747. https://doi.org/10.1016/j.bone.2008.06.012

    Article  PubMed  Google Scholar 

  10. Bartzela T, Türp JC, Motschall E, Maltha JC (2009) Medication effects on the rate of orthodontics tooth movement: a systemic literature review. Am J Orthod Dentofac Orthop 135(1):16–26. https://doi.org/10.1016/j.ajodo.2008.08.016

    Article  Google Scholar 

  11. Hughes FJ (1995) Cytokines and cell signalling in the periodontium. Oral Dis 1(4):259–265 doi.org/10.1111/j.1601-0825.1995.tb00191.x

    Article  Google Scholar 

  12. Yamamoto T, Kita M, Oseko F, Nakamura T, Imanishi J, Kanamura N (2006) Cytokine production in human periodontal ligament cells stimulated with Porphyromonas gingivalis. J Periodontal Res 41(6):554–559. https://doi.org/10.1111/j.1600-0765.2006.00905.x

    Article  PubMed  Google Scholar 

  13. Brooks PJ, Nilforoushan D, Manolson MF, Simmons CA, Gong SG (2009) Molecular markers of early orthodontic tooth movement. Angle Orthod 79(6):1108–1113. https://doi.org/10.2319/121508-638R.1

    Article  PubMed  Google Scholar 

  14. Krishnan V, Davidovitch Z (2009) On a path to unfolding the biological mechanisms of orthodontic tooth movement. J Dent Res 88(7):597–608. https://doi.org/10.1177/0022034509338914

    Article  PubMed  Google Scholar 

  15. Worapamorn W, Haase HR, Li H, Bartold PM (2001) Growth factors and cytokines modulate gene expression of cell-surface proteoglycans in human periodontal ligament cells. J Cell Physiol 186(3):448–456. https://doi.org/10.1002/1097-4652(2001)9999:9999<000::AID-JCP1047>3.0.CO;2-V

    Article  PubMed  Google Scholar 

  16. Patil AK, Shetty AS, Setty S, Thakur S (2013) Understanding the advances in biology of orthodontic tooth movement for improved ortho-perio interdisciplinary approach. J Indian Soc Periodontol 17(3):309–318. https://doi.org/10.4103/0972-124X.115648

    Article  PubMed  PubMed Central  Google Scholar 

  17. Masella RS, Meister M (2006) Current concepts in the biology of orthodontic tooth movement. Am J Orthod Dentofac Orthop 129(4):458–468. https://doi.org/10.1016/j.ajodo.2005.12.013

    Article  Google Scholar 

  18. Gao Y, Morita I, Maruo N, Kubota T, Murota S, Aso T (1998) Expression of IL-6 receptor and GP130 inmouse bonemarrow cells during osteoclast differentiation. Bone 22(5):487–493. https://doi.org/10.1016/S8756-3282(98)00040-4

    Article  PubMed  Google Scholar 

  19. Fox SW, Fuller K, Bayley KE, Lean JM, Chambers TJ (2000) TGF-beta 1 and IFN-gamma direct macrophage activation by TNF-alpha to osteoclastic or cytocidal phenotype. J Immunol 165(9):4957–4963. https://doi.org/10.4049/jimmunol.165.9.4957

    Article  PubMed  Google Scholar 

  20. Meeran NA (2013) Cellular response within the periodontal ligament on application of orthodontic forces. J Indian Soc Periodontol 17(1):16–20. https://doi.org/10.4103/0972-124X.107468

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wu M, Chen G, Li YP (2016) TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res 4:16009. https://doi.org/10.1038/boneres.2016.9

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yoshitake F, Itoh S, Narita H, Ishihara K, Ebisu S (2008) Interleukin-6 directly inhibits osteoclast differentiation by suppressing receptor activator of NF-kappaB signaling pathways. J Biol Chem 283(17):11535–11540. https://doi.org/10.1074/jbc.M607999200

    Article  PubMed  Google Scholar 

  23. Karsenty G (2003) The complexities of skeletal biology. Nature 423(6937):316–318. https://doi.org/10.1038/nature01654

    Article  PubMed  Google Scholar 

  24. Janssens K, ten Dijke P, Janssens S, Van Hul W (2005) Transforming growth factor-beta1 to the bone. Endocr Rev 26(6):743–774. https://doi.org/10.1210/er.2004-0001

    Article  PubMed  Google Scholar 

  25. Chen G, Deng C, Li YP (2012) TGF-β and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci 8(2):272–288. https://doi.org/10.7150/ijbs.2929

    Article  PubMed  PubMed Central  Google Scholar 

  26. Tachi K, Takami M, Sato H, Mochizuki A, Zhao B, Miyamoto Y, Tsukasaki H, Inoue T, Shintani S, Koike T, Honda Y, Suzuki O, Baba K, Kamijo R (2011) Enhancement of bone morphogenetic protein-2-induced ectopic bone formation by transforming growth factor-β1. Tissue Eng Part A 17(5–6):597–606. https://doi.org/10.1089/ten

    Article  PubMed  Google Scholar 

  27. Tsuji K, Bandyopadhyay A, Harfe BD, Cox K, Kakar S, Gerstenfeld L, Einhorn T, Tabin CJ, Rosen V (2006) BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nat Genet 38(12):1424–1429. https://doi.org/10.1038/ng1916

    Article  PubMed  Google Scholar 

  28. Di Domenico M, D’apuzzo F, Feola A, Cito L, Monsurrò A, Pierantoni GM, Berrino L, DeRosa A, Polimeni A, Perillo L (2012) Cytokines and VEGF induction in orthodontic movement in animal models. J Biomed Biotechnol 2012:201689–201684. https://doi.org/10.1155/2012/201689

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yang YQ, Tan YY, Wong R, Wenden A, Zhang LK, Rabie AB (2012) The role of vascular endothelial growth factor in ossification. Int J Oral Sci 4(2):64–68. https://doi.org/10.1038/ijos.2012.33

    Article  PubMed  PubMed Central  Google Scholar 

  30. Schipani E (2006) Hypoxia and HIF-1alpha in chondrogenesis. Ann N Y Acad Sci 1068:66–73. https://doi.org/10.1196/annals.1346.009

    Article  PubMed  Google Scholar 

  31. Park HJ, Baek KH, Lee HL, Kwon A, Hwang HR, Qadir AS, Woo KM, Ryoo HM, Baek JH (2011) Hypoxia inducible factor-1α directly induces the expression of receptor activator of nuclear factor-κB ligand in periodontal ligament fibroblasts. Mol Cells 31(6):573–578. https://doi.org/10.1007/s10059-011-1055-x

    Article  PubMed  PubMed Central  Google Scholar 

  32. Long H, Pyakurel U, Wang Y, Liao L, Zhou Y, Lai W (2013) Interventions for accelerating orthodontic tooth movement: a systematic review. Angle Orthod 83(1):164–171. https://doi.org/10.2319/031512-224.1

    Article  PubMed  Google Scholar 

  33. Kim DH, Park YG, Kang SG (2008) The effects of electrical current from a micro-electrical device on tooth movement. Korean J Orthod 38(5):337–346. https://doi.org/10.4041/kjod.2008.38.5.337

    Article  Google Scholar 

  34. Spadari GS, Zaniboni E, Vedovello SA, Santamaria MP, do Amaral ME, Dos Santos GM, Esquisatto MA, Mendonca FA, Santamaria M Jr (2017) Electrical stimulation enhances tissue reorganization during orthodontic tooth movement in rats. Clin Oral Investig 21(1):111–120. https://doi.org/10.1007/s00784-016-1759-6

    Article  PubMed  Google Scholar 

  35. Kawasaki K, Shimizu N (2000) Effects of low-energy laser irradiation on bone remodeling during experimental tooth movement in rats. Lasers Surg Med 26(3):282–291. https://doi.org/10.1002/(SICI)1096-9101(2000)26:3<282:D-LSM6>3.0.CO;2-X

    Article  PubMed  Google Scholar 

  36. Nalcaci R, Cokakoglu S (2013) Lasers in orthodontics. Eur J Dent 7(Suppl 1):S119–S125. https://doi.org/10.4103/1305-7456.119089

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yassaei S, Fekrazad R, Shahraki N (2013) Effect of low level laser therapy on orthodontic tooth movement: a review article. J Dent (Tehran) 10(3):264–272

    Google Scholar 

  38. Dalaie K, Hamedi R, Kharazifard MJ, Mahdian M, Bayat M (2015) Effect of low-level laser therapy on orthodontic tooth movement: a clinical investigation. J Dent (Tehran) 12(4):249–256

    Google Scholar 

  39. Deana NF, Zaror C, Sandoval P, Alves N (2017) Effectiveness of low-level laser therapy in reducing orthodontic pain: a systematic review and meta-analysis. Pain Res Manag 2017:8560652–8560618. https://doi.org/10.1155/2017/8560652

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kim SJ, Moon SU, Kang SG, Park YG (2009) Effects of low-level laser therapy after corticision on tooth movement and paradental remodeling. Lasers Surg Med 41(7):524–533. https://doi.org/10.1002/lsm.20792

    Article  PubMed  Google Scholar 

  41. Institute for Laboratory Animal Research (2011) Guide for the care, and use of laboratory animals. National Academies Press, Washington, DC

    Google Scholar 

  42. Lee W, Karapetyan G, Moats R, Yamashita DD, Moon HB, Ferguson DJ, Yen S (2008) Corticotomy-osteotomy-assisted tooth movement microCTs differ. J Dent Res 87(9):861–867. https://doi.org/10.1177/154405910808700904

    Article  PubMed  Google Scholar 

  43. Franzoni JS, Soares FMP, Zaniboni E, Vedovello Filho M, Santamaria MP, Dos Santos GMT, Esquisatto MAM, Felonato M, Mendonca FAS, Franzini CM, Santamaria M Jr (2017) Zoledronic acid and alendronate sodium and the implications in orthodontic movement. Orthod Craniofac Res 20(3):164–169. https://doi.org/10.1111/ocr.12192

    Article  PubMed  Google Scholar 

  44. Zaniboni E, Vedovello Filho M, Santamaria MP, Jardini MAN, Martins-Ortiz MF, Consolaro A, Santamaria M Jr (2017) Root morphology can be a risk factor for periodontal damage and root resorption in orthodontic movement. Braz J Oral Sci 16(e17090):1–8. https://doi.org/10.20396/bjos.v16i1.8651188

    Article  Google Scholar 

  45. Dominici M (1902) Sur une methode de technique histologique appropriee a l’etude du systeme hematopoietique. Compt Rend Soc Biol 54:221–223

    Google Scholar 

  46. Boas Nogueira AV, Chaves de Souza JA, Kim YJ, Damião de Sousa-Neto M, Chan Cirelli C, Cirelli JA (2013) Orthodontic force increases interleukin-1β and tumor necrosis factor-α expression and alveolar bone loss in periodontitis. J Periodontol 84:1319–1326. https://doi.org/10.1902/jop.2012.120510

    Article  PubMed  Google Scholar 

  47. Wang L, Lee W, Lei DL, Liu YP, Yamashita DD, Yen SL (2009) Tisssue responses in corticotomy- and osteotomy-assisted tooth movements in rats: histology and immunostaining. Am J Orthod Dentofacial Orthop 136:770.e1–770.e11. https://doi.org/10.1016/j.ajodo.2009.05.015

    Article  Google Scholar 

  48. Mountziaris PM, Mikos AG (2008) Modulation of the inflammatory response for enhanced bone tissue regeneration. Tissue Eng B Rev 14(2):179–186. https://doi.org/10.1089/ten.teb.2008.0038

    Article  Google Scholar 

  49. Bassett CA (1967) Biologic significance of piezoelectricity. Calcif Tissue Res 1(4):252–272. https://doi.org/10.1007/BF02008098

    Article  Google Scholar 

  50. El-Angbawi A, McIntyre GT, Fleming PS, Bearn DR (2015) Non-surgical adjunctive interventions for accelerating tooth movement in patients undergoing fixed orthodontic treatment. Cochrane Database Syst Rev 11:CD010887. https://doi.org/10.1002/14651858.CD010887.pub2

    Article  Google Scholar 

  51. Oshiro T, Shiotani A, Shibasaki Y, Sasaki T (2002) Osteoclast induction in periodontal tissue during experimental movement of incisors in osteoprotegerin-deficient mice. Anat Rec 266(4):218–225. https://doi.org/10.1002/ar.10061

    Article  PubMed  Google Scholar 

  52. Kanzaki H, Chiba M, Shimizu Y, Mitani H (2001) Dual regulation of osteoclast differentiation by periodontal ligament cells through RANKL stimulation and OPG inhibition. J Dent Res 80(3):887–891. https://doi.org/10.1177/00220345010800030801

    Article  PubMed  Google Scholar 

  53. Kurohama T, Hotokezaka H, Hashimoto M, Tajima T, Arita K, Kondo T, Ino A, Yoshida N (2017) Increasing the amount of corticotomy does not affect orthodontic tooth movement or root resorption, but accelerates alveolar bone resorption in rats. Eur J Orthod 39(3):277–286. https://doi.org/10.1093/ejo/cjw038

    Article  PubMed  Google Scholar 

  54. Verna C, Dalstra M, Melsen B (2003) Bone turnover rate in rats does not influence root resorption induced by orthodontic treatment. Eur J Orthod 25(4):359–363. https://doi.org/10.1093/ejo/25.4.359

    Article  PubMed  Google Scholar 

  55. Hassan AH, Al-Fraidi AA, Al-Saeed SH (2010) Corticotomy-assisted orthodontic treatment. Saudi Med J 36(7):794–801. https://doi.org/10.2174/1874210601004010159

    Article  Google Scholar 

  56. Medrado AR, Pugliese LS, Reis SR, Andrade ZA (2003) Influence of low level laser therapy on wound healing and its biological action upon myofibroblasts. Lasers Surg Med 32(3):239–244. https://doi.org/10.1002/lsm.10126

    Article  PubMed  Google Scholar 

  57. Kipshidze N, Nikolaychik V, Keelan MH, Shankar LR, Khanna A, Kornowski R, Leon M, Moses J (2001) Low-power helium: neon laser irradiation enhances production of vascular endothelial growth factor and promotes growth of endothelial cells in vitro. Lasers Surg Med 28(4):355–364. https://doi.org/10.1002/lsm.1062

    Article  PubMed  Google Scholar 

  58. Medrado AP, Soares AP, Santos ET, Reis SR, Andrade ZA (2008) Influence of laser photobiomodulation upon connective tissue remodeling during wound healing. J Photochem Photobiol B 92(3):144–152. https://doi.org/10.1016/j.jphotobiol.2008.05.008

    Article  PubMed  Google Scholar 

  59. Krishnan V, Davidovitch Z (2006) Cellular, molecular, and tissuelevel reactions to orthodontic force. Am J Orthod Dentofacial Orthop 129:469.e1–469.32. https://doi.org/10.1016/j.ajodo.2005.10.007

    Article  Google Scholar 

  60. Ai-Aql ZS, Alagl AS, Graves DT, Gerstenfeld LC, Einhorn TA (2008) Molecular mechanisms controlling bone formation during fracture healing and distraction osteogenesis. J Dent Res 87(2):107–118. https://doi.org/10.1177/154405910808700215

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zhao L, Jiang S, Hantash BM (2010) Transforming growth factor beta1 induces osteogenic differentiation of murine bone marrow stromal cells. Tissue Eng A 16(2):725–733. https://doi.org/10.1089/ten.TEA.2009.0495

    Article  Google Scholar 

  62. Bismar H, Klöppinger T, Schuster EM, Balbach S, Diel I, Ziegler R, Pfeilschifter J (1999) Transforming growth factor beta (TGF-beta) levels in the conditioned media of human bone cells: relationship to donor age, bone volume, and concentration of TGF-beta in human bone matrix in vivo. Bone 24(6):565–569. https://doi.org/10.1016/S8756-3282(99)00082-4

    Article  PubMed  Google Scholar 

  63. Garlet TP, Coelho U, Silva JS, Garlet GP (2007) Cytokine expression. Pattern in compression and tension sides of the periodontal ligament during orthodontic tooth movement in humans. Eur J Oral Sci 115(5):355–362. https://doi.org/10.1111/j.1600-0722.2007.00469.x

    Article  PubMed  Google Scholar 

  64. Boyce BF, Xing L (2007) Biology of RANK, RANKL, and osteoprotegerin. Arthritis Res Ther 9(Suppl 1):S1. https://doi.org/10.1186/ar2165

    Article  PubMed  PubMed Central  Google Scholar 

  65. Nimeri G, Kau CH, Abou-Kheir NS, Corona R (2013) Acceleration of tooth movement during orthodontic treatment—a frontier in orthodontics. Prog Orthod 29(14):42. https://doi.org/10.1186/2196-1042-14-42

    Article  Google Scholar 

  66. Huang H, Williams RC, Kyrkanides S (2014) Accelerated orthodontic tooth movement: molecular mechanisms. Am J Orthod Dentofac Orthop 146(5):620–632. https://doi.org/10.1016/j.ajodo.2014.07.007

    Article  Google Scholar 

  67. Alhashimi N, Frithiof L, Brudvik P, Bakhiet M (2001) Orthodontic tooth movement and de novo synthesis of proinflammatory cytokines. Am J Orthod Dentofac Orthop 119(3):307–312. https://doi.org/10.1067/mod.2001.110809

    Article  Google Scholar 

  68. Nobuto T, Suwa F, Kono T, Taguchi Y, Takahashi T, Kanemura N, Terada S, Imai H (2005) Microvascular response in the periosteum following mucoperiosteal flap surgery in dogs: angiogenesis and bone resorption and formation. J Periodontol 76(8):1346–1353. https://doi.org/10.1902/jop.2005.76.8.1346

    Article  PubMed  Google Scholar 

  69. Crotti TN, Smith MD, Findlay DM, Zreiqat H, Ahern MJ, Weedon H, Hatzinikolous G, Capone M, Holding C, Haynes DR (2004) Factors regulating osteoclast formation in human tissues adjacent to peri-implant bone loss: expression of receptor activator NFkappaB, RANK ligand and osteoprotegerin. Biomaterials 25(4):565–573. https://doi.org/10.1016/S0142-9612(03)00556-8

    Article  PubMed  Google Scholar 

  70. Ogasawara T, Yoshimine Y, Kiyoshima T, Kobayashi I, Matsuo K, Akamine A, Sakai H (2004) In situ expression of RANKL, RANK, osteoprotegerin and cytokines in osteoclasts of rat periodontal tissue. J Periodontal Res 39(1):42–49. https://doi.org/10.1111/j.1600-0765.2004.00699.x

    Article  PubMed  Google Scholar 

  71. Fonseca JH Jr, Bagne L, Meneghetti DH, GMT DS, MAM E, de Andrade TAM, do Amaral MEC, Felonato M, Caetano GF, Santamaria M Jr, FAS M (2018) Electrical stimulation: complementary therapy to improve the performance of grafts in bone defects? Study in animal model. J Biomed Mater Res B Appl Biomater. https://doi.org/10.1002/jbm.b.34187

  72. Schipani E, Maes C, Carmeliet G, Semenza GL (2009) Regulation of osteogenesis-angiogenesis coupling by HIFs and VEGF. J Bone Miner Res 24:1347–1353. https://doi.org/10.1359/jbmr.090602

    Article  PubMed  PubMed Central  Google Scholar 

  73. Aaron RK, Boyan BD, Ciombor DM, Schwartz Z, Simon BJ (2004) Stimulation of growth factor synthesis by electric and electromagnetic fields. Clin Orthop Relat Res 419:30–37. https://doi.org/10.1097/00003086-200402000-00006

    Article  Google Scholar 

  74. Zhou J, Dong J (2012) Vascularization in the bone repair. In: Lin Y (ed) Osteogenesis. IntechOpen, Shanghai, pp 287–296. https://doi.org/10.5772/36325

    Chapter  Google Scholar 

  75. Barleon B, Sozzani S, Zhou D, Weich HA, Mantovani A, Marmé D (1996) Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood 87(8):3336–3343. https://doi.org/10.1006/rwgn.2001.1715

    Article  PubMed  Google Scholar 

  76. Cecchi S, Bennet SJ, Arora M (2016) Bone morphogenetic protein-7: review of signalling and efficacy in fracture healing. J Orthop Translat 4:28–34. https://doi.org/10.1016/j.jot.2015.08.001

    Article  PubMed  Google Scholar 

  77. Wang Y, Rouabhia M, Lavertu D, Zhang Z (2017) Pulsed electrical stimulation modulates fibroblasts behavior through the Smad signaling pathway. J Tissue Eng Regen Med 11(4):1110–1121. https://doi.org/10.1002/term.2014

    Article  PubMed  Google Scholar 

  78. Pugliese LS, Medrado AP, Reis SR, Andrade Zde A (2003) The influence of low-level laser therapy on biomodulation of collagen and elastic fibers. Pesqui Odontol Bras 17(4):307–313. https://doi.org/10.1590/s1517-74912003000400003

    Article  PubMed  Google Scholar 

Download references

Funding

The work was supported by the Heminio Ometto Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milton Santamaria Jr.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed and were in accordance with the ethical standards of the Research Ethics Committee of Herminio Ometto University Center (Permit no. 020/2015).

Informed consent

For this type of study, formal consent is not required.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaniboni, E., Bagne, L., Camargo, T. et al. Do electrical current and laser therapies improve bone remodeling during an orthodontic treatment with corticotomy?. Clin Oral Invest 23, 4083–4097 (2019). https://doi.org/10.1007/s00784-019-02845-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-019-02845-9

Keywords

Navigation