Skip to main content

Advertisement

Log in

Low-serum culture with novel medium promotes maxillary/mandibular bone marrow stromal cell proliferation and osteogenic differentiation ability

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

The purpose of this study was to evaluate the effect of low-serum STK2 medium on the isolation and osteogenic differentiation of human maxillary/mandibular bone marrow stromal cells (MBMSCs).

Materials and methods

Human MBMSCs were obtained from patients undergoing dental implant treatment. These cells were cultured in serum-free medium or STK2 medium containing 1  % fetal bovine serum (low-serum) or α-MEM containing 10  % fetal bovine serum (control). Proliferation on the culture surface, cell surface antigen expression, and mRNA levels of neural crest and osteogenic markers were examined. Alkaline phosphatase assay and Alizarin red staining were used to assess osteogenic differentiation potential. Immunoblotting analysis was performed to detect ERK phosphorylation.

Results

Low-serum and control MBMSCs were positive for CD73, CD90, and CD105 and negative for CD14, CD34, CD45, CD271, and HLA-DR. CD140a was absent in low-serum cells but present in control cells. Low-serum MBMSCs proliferated more than control MBMSCs. After induction of osteogenic differentiation, alkaline phosphatase activity and osteocalcin mRNA levels were higher in low-serum MBMSCs than in control cells, and Alizarin red staining was stronger in low-serum MBMSCs than in control cells. Low-serum culture promoted ERK phosphorylation.

Conclusions

MBMSCs precultured in low-serum medium exhibited a greater cumulative cell number and a higher osteogenic differentiation capacity than those cultured in control medium.

Clinical relevance

These findings indicate that low-serum STK2 culture might be useful to promote MBMSC proliferation and osteogenic differentiation. This method requires less autologous blood collection for cell expansion than conventional methods, thus reducing the burden on patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Caplan AI, Bruder SP (2001) Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med 7(6):259–264

    Article  PubMed  Google Scholar 

  2. Deans RJ, Moseley AB (2000) Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol 28(8):875–884

    Article  PubMed  Google Scholar 

  3. Friedenstein AJ, Piatetzky S II, Petrakova KV (1966) Osteogenesis in transplants of bone marrow cells. Journal of embryology and experimental morphology 16(3):381–390

    PubMed  Google Scholar 

  4. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147

    Article  PubMed  Google Scholar 

  5. Matsubara T, Suardita K, Ishii M, Sugiyama M, Igarashi A, Oda R, Nishimura M, Saito M, Nakagawa K, Yamanaka K, Miyazaki K, Shimizu M, Bhawal UK, Tsuji K, Nakamura K, Kato Y (2005) Alveolar bone marrow as a cell source for regenerative medicine: differences between alveolar and iliac bone marrow stromal cells. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research 20(3):399–409. doi:10.1359/JBMR.041117

    Article  Google Scholar 

  6. Igarashi A, Segoshi K, Sakai Y, Pan H, Kanawa M, Higashi Y, Sugiyama M, Nakamura K, Kurihara H, Yamaguchi S, Tsuji K, Kawamoto T, Kato Y (2007) Selection of common markers for bone marrow stromal cells from various bones using real-time RT-PCR: effects of passage number and donor age. Tissue Eng 13(10):2405–2417. doi:10.1089/ten.2006.0340

    Article  PubMed  Google Scholar 

  7. Kaigler D, Pagni G, Park CH, Braun TM, Holman LA, Yi E, Tarle SA, Bartel RL, Giannobile WV (2013) Stem cell therapy for craniofacial bone regeneration: a randomized, controlled feasibility trial. Cell Transplant 22(5):767–777. doi:10.3727/096368912X652968

    Article  PubMed  PubMed Central  Google Scholar 

  8. Yamada Y, Nakamura S, Ito K, Umemura E, Hara K, Nagasaka T, Abe A, Baba S, Furuichi Y, Izumi Y, Klein OD, Wakabayashi T (2013) Injectable bone tissue engineering using expanded mesenchymal stem cells. Stem Cells 31(3):572–580. doi:10.1002/stem.1300

    Article  PubMed  PubMed Central  Google Scholar 

  9. Egusa H, Sonoyama W, Nishimura M, Atsuta I, Akiyama K (2012) Stem cells in dentistry—part I: stem cell sources. Journal of prosthodontic research 56(3):151–165. doi:10.1016/j.jpor.2012.06.001

    Article  PubMed  Google Scholar 

  10. Zhao H, Chai Y (2015) Stem cells in teeth and craniofacial bones. J Dent Res 94(11):1495–1501. doi:10.1177/0022034515603972

    Article  PubMed  PubMed Central  Google Scholar 

  11. Shinagawa K, Mitsuhara T, Okazaki T, Takeda M, Yamaguchi S, Magaki T, Okura Y, Uwatoko H, Kawahara Y, Yuge L, Kurisu K (2015) The characteristics of human cranial bone marrow mesenchymal stem cells. Neurosci Lett 606:161–166. doi:10.1016/j.neulet.2015.08.056

    Article  PubMed  Google Scholar 

  12. Egusa H, Sonoyama W, Nishimura M, Atsuta I, Akiyama K (2012) Stem cells in dentistry—part II: clinical applications. Journal of prosthodontic research 56(4):229–248. doi:10.1016/j.jpor.2012.10.001

    Article  PubMed  Google Scholar 

  13. Mason S, Tarle SA, Osibin W, Kinfu Y, Kaigler D (2014) Standardization and safety of alveolar bone-derived stem cell isolation. J Dent Res 93(1):55–61. doi:10.1177/0022034513510530

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chai Y, Jiang X, Ito Y, Bringas P Jr, Han J, Rowitch DH, Soriano P, McMahon AP, Sucov HM (2000) Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development 127(8):1671–1679

    PubMed  Google Scholar 

  15. Mishina Y, Snider TN (2014) Neural crest cell signaling pathways critical to cranial bone development and pathology. Exp Cell Res 325(2):138–147. doi:10.1016/j.yexcr.2014.01.019

    Article  PubMed  PubMed Central  Google Scholar 

  16. Koole R, Bosker H, van der Dussen FN (1989) Late secondary autogenous bone grafting in cleft patients comparing mandibular (ectomesenchymal) and iliac crest (mesenchymal) grafts. Journal of cranio-maxillo-facial surgery : official publication of the European Association for Cranio-Maxillo-Facial Surgery 17(Suppl 1):28–30

    Article  Google Scholar 

  17. Nishimura M, Takase K, Suehiro F, Murata H (2012) Candidates cell sources to regenerate alveolar bone from oral tissue. International journal of dentistry 2012:857192. doi:10.1155/2012/857192

    Article  PubMed  PubMed Central  Google Scholar 

  18. Vacanti JP, Langer R, Upton J, Marler JJ (1998) Transplantation of cells in matrices for tissue regeneration. Adv Drug Deliv Rev 33(1–2):165–182

    PubMed  Google Scholar 

  19. Mannello F, Tonti GA (2007) Concise review: no breakthroughs for human mesenchymal and embryonic stem cell culture: conditioned medium, feeder layer, or feeder-free; medium with fetal calf serum, human serum, or enriched plasma; serum-free, serum replacement nonconditioned medium, or ad hoc formula? All that glitters is not gold! Stem Cells 25(7):1603–1609. doi:10.1634/stemcells.2007-0127

    Article  PubMed  Google Scholar 

  20. Nuttall PA, Luther PD, Stott EJ (1977) Viral contamination of bovine foetal serum and cell cultures. Nature 266(5605):835–837

    Article  PubMed  Google Scholar 

  21. Mizuno D, Agata H, Furue H, Kimura A, Narita Y, Watanabe N, Ishii Y, Ueda M, Tojo A, Kagami H (2010) Limited but heterogeneous osteogenic response of human bone marrow mesenchymal stem cells to bone morphogenetic protein-2 and serum. Growth Factors 28(1):34–43. doi:10.3109/08977190903326362

    Article  PubMed  Google Scholar 

  22. Aldahmash A, Haack-Sorensen M, Al-Nbaheen M, Harkness L, Abdallah BM, Kassem M (2011) Human serum is as efficient as fetal bovine serum in supporting proliferation and differentiation of human multipotent stromal (mesenchymal) stem cells in vitro and in vivo. Stem Cell Rev 7(4):860–868. doi:10.1007/s12015-011-9274-2

    Article  PubMed  Google Scholar 

  23. Lange C, Cakiroglu F, Spiess AN, Cappallo-Obermann H, Dierlamm J, Zander AR (2007) Accelerated and safe expansion of human mesenchymal stromal cells in animal serum-free medium for transplantation and regenerative medicine. J Cell Physiol 213(1):18–26. doi:10.1002/jcp.21081

    Article  PubMed  Google Scholar 

  24. Tsutsumi S, Shimazu A, Miyazaki K, Pan H, Koike C, Yoshida E, Takagishi K, Kato Y (2001) Retention of multilineage differentiation potential of mesenchymal cells during proliferation in response to FGF. Biochem Biophys Res Commun 288(2):413–419. doi:10.1006/bbrc.2001.5777

    Article  PubMed  Google Scholar 

  25. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317. doi:10.1080/14653240600855905

    Article  PubMed  Google Scholar 

  26. Aghaloo TL, Chaichanasakul T, Bezouglaia O, Kang B, Franco R, Dry SM, Atti E, Tetradis S (2010) Osteogenic potential of mandibular vs. long-bone marrow stromal cells. J Dent Res 89(11):1293–1298. doi:10.1177/0022034510378427

    Article  PubMed  PubMed Central  Google Scholar 

  27. Akintoye SO, Lam T, Shi S, Brahim J, Collins MT, Robey PG (2006) Skeletal site-specific characterization of orofacial and iliac crest human bone marrow stromal cells in same individuals. Bone 38(6):758–768. doi:10.1016/j.bone.2005.10.027

    Article  PubMed  Google Scholar 

  28. De Souza Faloni AP, Schoenmaker T, Azari A, Katchburian E, Cerri PS, De Vries TJ, Everts V (2011) Jaw and long bone marrows have a different osteoclastogenic potential. Calcif Tissue Int 88(1):63–74

    Article  PubMed  Google Scholar 

  29. Ishikawa I, Sawada R, Kato Y, Tsuji K, Shao J, Yamada T, Kato R, Tsuchiya T (2009) Effectivity of the novel serum-free medium STK2 for proliferating human mesenchymal stem cells. Yakugaku Zasshi 129(3):381–384

    Article  PubMed  Google Scholar 

  30. Mittag F, Falkenberg EM, Janczyk A, Gotze M, Felka T, Aicher WK, Kluba T (2012) Laminin-5 and type I collagen promote adhesion and osteogenic differentiation of animal serum-free expanded human mesenchymal stromal cells. Orthop Rev 4(4):e36. doi:10.4081/or.2012.e36

    Article  Google Scholar 

  31. Schleicher I, Parker A, Leavesley D, Crawford R, Upton Z, Xiao Y (2005) Surface modification by complexes of vitronectin and growth factors for serum-free culture of human osteoblasts. Tissue Eng 11(11–12):1688–1698. doi:10.1089/ten.2005.11.1688

    Article  PubMed  Google Scholar 

  32. Guillot PV, De Bari C, Dell'Accio F, Kurata H, Polak J, Fisk NM (2008) Comparative osteogenic transcription profiling of various fetal and adult mesenchymal stem cell sources. Differentiation; research in biological diversity 76(9):946–957. doi:10.1111/j.1432-0436.2008.00279.x

    Article  PubMed  Google Scholar 

  33. Hendig D, Schulz V, Arndt M, Szliska C, Kleesiek K, Gotting C (2006) Role of serum fetuin-A, a major inhibitor of systemic calcification, in pseudoxanthoma elasticum. Clin Chem 52(2):227–234. doi:10.1373/clinchem.2005.059253

    Article  PubMed  Google Scholar 

  34. Schafer C, Heiss A, Schwarz A, Westenfeld R, Ketteler M, Floege J, Muller-Esterl W, Schinke T, Jahnen-Dechent W (2003) The serum protein alpha 2-Heremans-Schmid glycoprotein/fetuin-A is a systemically acting inhibitor of ectopic calcification. J Clin Invest 112(3):357–366. doi:10.1172/JCI17202

    Article  PubMed  PubMed Central  Google Scholar 

  35. Houlihan DD, Mabuchi Y, Morikawa S, Niibe K, Araki D, Suzuki S, Okano H, Matsuzaki Y (2012) Isolation of mouse mesenchymal stem cells on the basis of expression of Sca-1 and PDGFR-alpha. Nat Protoc 7(12):2103–2111. doi:10.1038/nprot.2012.125

    Article  PubMed  Google Scholar 

  36. Mabuchi Y, Morikawa S, Harada S, Niibe K, Suzuki S, Renault-Mihara F, Houlihan DD, Akazawa C, Okano H, Matsuzaki Y (2013) LNGFR(+)THY-1(+)VCAM-1(hi+) cells reveal functionally distinct subpopulations in mesenchymal stem cells. Stem cell reports 1(2):152–165. doi:10.1016/j.stemcr.2013.06.001

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhou BO, Yue R, Murphy MM, Peyer JG, Morrison SJ (2014) Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell 15(2):154–168. doi:10.1016/j.stem.2014.06.008

    Article  PubMed  PubMed Central  Google Scholar 

  38. Maeda K, Enomoto A, Hara A, Asai N, Kobayashi T, Horinouchi A, Maruyama S, Ishikawa Y, Nishiyama T, Kiyoi H, Kato T, Ando K, Weng L, Mii S, Asai M, Mizutani Y, Watanabe O, Hirooka Y, Goto H, Takahashi M (2016) Identification of Meflin as a potential marker for mesenchymal stromal cells. Scientific reports 6:22288. doi:10.1038/srep22288

    Article  PubMed  PubMed Central  Google Scholar 

  39. Harkness L, Zaher W, Ditzel N, Isa A, Kassem M (2016) CD146/MCAM defines functionality of human bone marrow stromal stem cell populations. Stem cell research & therapy 7:4. doi:10.1186/s13287-015-0266-z

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank DS Pharma Biomedical for providing the STK2 medium; GC for providing the puncture needle; and the patients in the Department of Regenerative Oral Surgery, Nagasaki University Hospital, for the bone marrow samples. This work was supported by a Grant-in-Aid for Young Researchers (B23792237) and Grants-in-Aid for Scientific Research (C25463007, B22390367, and B26293414) from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Nishimura.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

This article was not supported by any funding.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suehiro, F., Ishii, M., Asahina, I. et al. Low-serum culture with novel medium promotes maxillary/mandibular bone marrow stromal cell proliferation and osteogenic differentiation ability. Clin Oral Invest 21, 2709–2719 (2017). https://doi.org/10.1007/s00784-017-2073-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-017-2073-7

Keywords

Navigation