Skip to main content

Advertisement

Log in

In vitro and ex vivo antimicrobial efficacy of nano-MgO in the elimination of endodontic pathogens

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

The use of metal oxide nanoparticles has attracted lots of attention, mostly because of their promising antimicrobial activity along with their biocompatibility with mammalian cells. This study aims to investigate the in vitro and ex vivo antimicrobial efficiency of nano-magnesium oxide (MgO) aqueous solution against endodontic pathogens.

Materials and methods

The cytotoxicity of different concentrations of nano-MgO was assessed using lactate dehydrogenase cytotoxicity assay (LDH assay). A comparison of the antimicrobial efficiency of several concentrations of nano-MgO solution, sodium hypochlorite (NaOCl), and chlorhexidine (CHX) gluconate against Staphylococcus aureus, Enterococcus faecalis, and Candida albicans was made using the direct contact method. An ex vivo model of decoronated and experimentally infected human teeth was employed to compare the efficiency of nano-MgO (5 mg/L) solution with NaOCl (5.25 %) in the elimination of E. faecalis.

Results

There was no statistically significant difference between nano-MgO solutions (10 and 5 mg/L), 5.25 % NaOCl, and 2 % CHX gluconate in terms of the required time to inhibit the growth of the tested pathogens (p > 0.05). The LDH assay showed no cytotoxicity of different concentrations of nano-MgO used in this study (p < 0.001). In the ex vivo model of infected human teeth, 6 h post-irrigation, there was no statistically significant difference between colony-forming units (CFU) per milliliter of nano-MgO (5 mg/L) and NaOCl (5.25 %)-treated teeth (5–6 log scale reduction). However, the nano-MgO group showed a significant decrease in colony-forming units per milliliter (7 log scale), 24 h post-irrigation (p < 0.05). At other tested time points—24, 48, 72, and 168 h—the levels of CFU per milliliter were significantly less in the nano-MgO group (2–3 log scale difference) compared to the NaOCl group, indicating long-term antibacterial activity of nano-MgO (p < 0.05). At 72 and 168 h post-irrigation, no detectable bacterial growth was observed in the nano-MgO group. The detection limit was 10 CFU/mL.

Conclusions

Nano-MgO aqueous solutions represent promising antimicrobial activities, both in vitro and ex vivo with minimal toxicity.

Clinical relevance

Compared to NaOCl (5.25 %), nano-MgO (5 mg/L) exhibits statistically significant long-term efficiency in the elimination of E. faecalis in the root canal system. After further investigations, nano-MgO could be considered as a new root canal irrigant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Câmara AC, de Albuquerque MM, Aguiar CM (2009) de Barros Correia AC. In vitro antimicrobial activity of 0.5 %, 1 %, and 2.5 % sodium hypochlorite in root canal instruments with the ProTaper Universal system. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 108:e55–e56

    Article  PubMed  Google Scholar 

  2. Radcliffe CE, Potouridou L, Qureshi R, Habahbeh N, Qualtrough A, Worthington H et al (2004) Antimicrobial activity of varying concentrations of sodium hypochlorite on the endodontic microorganisms Actinomyces israelii, A. naeslundii, Candida albicans and Enterococcus faecalis. Int Endod J 37:438–446

    Article  PubMed  Google Scholar 

  3. Stuart CH, Schwartz SA, Beeson TJ, Owatz CB (2006) Enterococcus faecalis: its role in root canal treatment failure and current concepts in retreatment. J Endod 32:93–98

    Article  PubMed  Google Scholar 

  4. Sunde PT, Olsen I, Debelian GJ, Tronstad L (2002) Microbiota of periapical lesions refractory to endodontic therapy. J Endod 28:304–310

    Article  PubMed  Google Scholar 

  5. Neglia R, Ardizzoni A, Giardino L, Ambu E, Grazi S, Calignano S, Rimoldi C, Righi E, Blasi E (2008) Comparative in vitro and ex vivo studies on the bactericidal activity of Tetraclean, a new generation endodontic irrigant, and sodium hypochlorite. New Microbiol 31:57–65

    PubMed  Google Scholar 

  6. Retamozo B, Shabahang S, Johnson N, Aprecio RM, Torabinejad M (2010) Minimum contact time and concentration of sodium hypochlorite required to eliminate Enterococcus faecalis. J Endod 36:520–523

    Article  PubMed  Google Scholar 

  7. Lebreton F, Riboulet-Bisson E, Serror P, Sanguinetti M, Posteraro B, Torelli R et al (2009) Ace, which encodes an adhesin in Enterococcus faecalis, is regulated by Ers and is involved in virulence. Infect Immun 77:2832–2839

    Article  PubMed Central  PubMed  Google Scholar 

  8. Sakamoto M, Siqueira JF Jr, Rôças IN, Benno Y (2008) Molecular analysis of the root canal microbiota associated with endodontic treatment failures. Oral Microbiol Immunol 23:275–278

    Article  PubMed  Google Scholar 

  9. Peciuliene V, Balciuniene I, Eriksen HM, Haapasalo M (2000) Isolation of Enterococcus faecalis in previously root-filled canals in a Lithuanian population. J Endod 26:593–595

    Article  PubMed  Google Scholar 

  10. Blount CA, Leser C (2012) Multisystem complications following endodontic therapy. J Oral Maxillofac Surg 70:527–530

    Article  PubMed  Google Scholar 

  11. Sundqvist G, Figdor D, Persson S, Sjogren U (1998) Microbiologic analysis of teeth with failed endodontic treatment and the outcome of conservative re-treatment. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 85:86–93

    Article  PubMed  Google Scholar 

  12. Estrela C, Silva JA, de Alencar AH, Leles CR, Decurcio DA et al (2008) Efficacy of sodium hypochlorite and chlorhexidine against Enterococcus faecalis—a systematic review. J Appl Oral Sci 16:364–368

    Article  PubMed  Google Scholar 

  13. Zehnder M (2006) Root canal irrigants. J Endod 32:389–398

    Article  PubMed  Google Scholar 

  14. Giardino L, Ambu E, Becce C, Rimondini L, Morra M (2006) Surface tension comparison of four common root canal irrigants and two new irrigants containing antibiotic. J Endod 32:1091–1093

    Article  PubMed  Google Scholar 

  15. Arias-Moliz MT, Ferrer-Luque CM, González-Rodríguez MP, Valderrama MJ, Baca P (2010) Eradication of Enterococcus faecalis biofilms by cetrimide and chlorhexidine. J Endod 36:87–90

    Article  PubMed  Google Scholar 

  16. Shih M, Marshall FJ, Rosen S (1970) The bactericidal efficiency of sodium hypochlorite as an endodontic irrigant. Oral Surg Oral Med Oral Pathol 29:613–619

    Article  PubMed  Google Scholar 

  17. Ardizzoni A, Blasi E, Rimoldi C, Giardino L, Ambu E, Righi E, Neglia R (2009) An in vitro and ex vivo study on two antibiotic-based endodontic irrigants: a challenge to sodium hypochlorite. New Microbiol 32:57–66

    PubMed  Google Scholar 

  18. Giardino L, Ambu E, Becce C, Rimondini L, Morra M (2006) Surface tension comparison of four common root canal irrigants and two new irrigants containing antibiotic. J Endod 32:1091–1093

    Article  PubMed  Google Scholar 

  19. Gomes BPFA, Drucker DB, Lilley JD (1996) Association of endodontic symptoms and signs with particular combinations of specific bacteria. Int Endod J 29:69–75

    Article  PubMed  Google Scholar 

  20. Cheung GSP, Stock CJR (1993) In vitro cleaning ability of root canal irrigants with and without endodontics. Int Endod J 26:334–343

    Article  PubMed  Google Scholar 

  21. Anagnostakos K, Hitzler P, Pape D, Kohn D, Kelm J (2008) Persistence of bacterial growth on antibiotic-loaded beads: is it actually a problem? Acta Orthop 79:302–307

    Article  PubMed  Google Scholar 

  22. Huang L, Li DQ, Lin YJ, Wei M, Evans DG, Duan X (2005) Controllable preparation of Nano-MgO and investigation of its bactericidal properties. J Inorg Biochem 9:986–993

    Article  Google Scholar 

  23. Jin T, He Y (2011) Antibacterial activities of magnesium oxide (MgO) nanoparticles against foodborne pathogens. J Nanoparticle Res 13:6877–688

    Article  Google Scholar 

  24. Leung YH, Ng AM, Xu X, Shen Z, Gethings LA, Wong MT et al (2013) Mechanisms of antibacterial activity of MgO: non-ROS mediated toxicity of MgO nanoparticles towards Escherichia coli. Small. doi:10.1002/smll.201302434

    PubMed  Google Scholar 

  25. Vidic J, Stankic S, Haque F, Ciric D, Le Goffic R, Vidy A (2013) Selective antibacterial effects of mixed ZnMgO nanoparticles. J Nanoparticle Res 15:1595

    Article  Google Scholar 

  26. Amal R, Coury JR, Raper JA, Walsh WP, Waite TD (1990) Structure and kinetics of aggregating colloidal hematite. Colloids Surf 46:1–19

    Article  Google Scholar 

  27. Javidi M, Afkhami F, Zarei M, Ghazvini K, Rajabi O (2013) Efficacy of a combined nanoparticulate/calcium hydroxide root canal medication on elimination of Enterococcus faecalis. Aust Endod J. doi:10.1111/aej.12028

    PubMed  Google Scholar 

  28. Onçağ O, Hoşgör M, Hilmioğlu S, Zekioğlu O, Eronat C, Burhanoğlu D (2003) Comparison of antibacterial and toxic effects of various root canal irrigants. Int Endod J 36:423–432

    Article  PubMed  Google Scholar 

  29. Shabahang S, Torabinejad M (2003) Effect of MTAD on Enterococcus faecalis-contaminated root canals of extracted human teeth. J Endod 29:576–579

    Article  PubMed  Google Scholar 

  30. Lin YJ, Li DQ, Wang G, Huang L, Duan X (2005) Preparation and bactericidal property of MgO nanoparticles on gamma-Al2O3. J Mater Sci Mater Med 16:53–56

    Article  PubMed  Google Scholar 

  31. Zhang K, An Y, Zhang L, Dong Q (2012) Preparation of controlled nano-MgO and investigation of its bactericidal properties. Chemosphere 89:1414–1418

    Article  PubMed  Google Scholar 

  32. Ema M, Kobayashi N, Naya M, Hanai S, Nakanishi J (2010) Reproductive and developmental toxicity studies of manufactured nanomaterials. Reprod Toxicol 30:343–345

    Article  PubMed  Google Scholar 

  33. Koper OB, Klabunde JS, Marchin GL, Klabunde KJ, Stoimenov P, Bohra L (2002) Nanoscale powders and formulations with biocidal activity toward spores and vegetative cells of bacillus species, viruses, and toxins. Curr Microbiol 44:49–55

    Article  PubMed  Google Scholar 

  34. Berry V, Gole A, Kundu S, Murphy CJ, Saraf RF (2005) Deposition of CTAB-terminated nanorods on bacteria to form highly conducting hybrid systems. J Am Chem Soc 127:17600–17601

    Article  PubMed  Google Scholar 

  35. Yamamoto O, Sawai J, Sasamoto T (2000) Change in antibacterial characteristics with doping amount of ZnO in MgO–ZnO solid solution. Int J Inorg Mater 2:451–455

    Article  Google Scholar 

  36. Stankic S, Sternig A, Finocchi F, Bernardi J, Diwald O (2010) Zinc oxide scaffolds on MgO nanocubes. Nanotechnology 21:355603

    Article  PubMed  Google Scholar 

  37. Vidic J, Stankic S, Haque F, Ciric D, Le Goffic R, Vidy A et al (2013) Selective antibacterial effects of mixed ZnMgO nanoparticles. J Nanoparticle Res 15:1595

    Article  Google Scholar 

  38. Jahangiri L, Kesmati M, Najafzadeh H (2013) Evaluation of analgesic and anti-inflammatory effect of nanoparticles of magnesium oxide in mice with and without ketamine. Eur Rev Med Pharmacol Sci 17:2706–2710

    PubMed  Google Scholar 

  39. Joshi S, Ghosh I, Pokhrel S, Mädler L, Nau WM (2012) Interactions of amino acids and polypeptides with metal oxide nanoparticles probed by fluorescent indicator adsorption and displacement. ACS Nano 6:5668–5679

    Article  PubMed  Google Scholar 

  40. Bouwmeester H, Dekkers S, Noordam MY, Hagens WI, Bulder AS, de Heer C et al (2009) Review of health safety aspects of nanotechnologies in food production. Regul Toxicol Pharmacol 53:52–62

    Article  PubMed  Google Scholar 

  41. Magnuson BA, Jonaitis TS, Card JW (2011) A brief review of the occurrence, use, and safety of food-related nanomaterials. J Food Sci 76:R126–R133

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Dental Research Center/Tehran University of Medical Sciences.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Momen-Heravi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monzavi, A., Eshraghi, S., Hashemian, R. et al. In vitro and ex vivo antimicrobial efficacy of nano-MgO in the elimination of endodontic pathogens. Clin Oral Invest 19, 349–356 (2015). https://doi.org/10.1007/s00784-014-1253-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-014-1253-y

Keywords

Navigation