Skip to main content

Advertisement

Log in

Effect of pulverized natural bone mineral on regeneration of three-wall intrabony defects. A preclinical study

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Aims

The objective of this study is to evaluate the effects of a paste-like bone substitute material with easy handling properties and improved mechanical stability on periodontal regeneration of intrabony defects in dogs.

Materials and methods

Mandibular and maxillary first and third premolars were extracted, and three-wall intrabony defects were created on second and fourth premolars. After a healing period of 3 months, acute type defects were filled with a paste-like formulation of deproteinized bovine bone mineral (DBBM) (particle size, 0.125–0.25 mm) in a collagenous carrier matrix (T1), pulverized DBBM (particle size, 0.125–0.25 mm) without the carrier (T2), or Bio-Oss® granules (particle size, 0.25–1.00 mm) as control (C). All defects were covered with a Bio-Gide® membrane. The dogs were sacrificed after 12 weeks, and the specimens were analyzed histologically and histometrically.

Results

Postoperative healing of all defects was uneventful, and no histological signs of inflammation were observed in the augmented and gingival regions. New cementum, new periodontal ligament, and new bone were observed in all three groups. The mean vertical bone gain was 3.26 mm (T1), 3.60 mm (T2), and 3.81 mm (C). That of new cementum was 2.25 mm (T1), 3.88 mm (T2), and 3.53 mm (C). The differences did not reach statistical significance. The DBBM particles were both incorporated in new bone and embedded in immature bone marrow.

Conclusions

The results of this preclinical study showed that the 0.125–0.25-mm DBBM particles in a powder or paste formulation resulted in periodontal regeneration comparable to the commercially available DBBM. Osteoconductivity, in particular, was not affected by DBBM size or paste formulation.

Clinical relevance

The improved handling properties of the paste-like bone substitute consisting of small DBBM particles embedded in a collagen-based carrier hold promise for clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Karring T, Lindhe J, Cortellini P (2003) Regenerative periodontal therapy. In: Lindhe J, Karring T, Lang NP (eds) Clinical periodontology and implant dentistry, 4th edn. Blackwell-Munksgard, Copenhagen, pp 650–704

    Google Scholar 

  2. Sculean A, Nikolidakis D, Schwarz F (2008) Regeneration of periodontal tissues: combinations of barrier membranes and grafting materials—biological foundation and preclinical evidence: a systematic review. J Clin Periodontol 35(8 Suppl):106–116. doi:10.1111/j.1600-051X.2008.01263.x

    Article  PubMed  Google Scholar 

  3. Camelo M, Nevins ML, Schenk RK, Simion M, Rasperini G, Lynch SE, Nevins M (1998) Clinical, radiographic, and histologic evaluation of human periodontal defects treated with Bio-Oss and Bio-Gide. Int J Periodontics Restor Dent 18(4):321–331

    Google Scholar 

  4. Mellonig JT (2000) Human histologic evaluation of a bovine-derived bone xenograft in the treatment of periodontal osseous defects. Int J Periodontics Restor Dent 20(1):19–29

    Google Scholar 

  5. Sculean A, Berakdar M, Chiantella GC, Donos N, Arweiler NB, Brecx M (2003) Healing of intrabony defects following treatment with a bovine-derived xenograft and collagen membrane. A controlled clinical study. J Clin Periodontol 30(1):73–80

    Article  PubMed  Google Scholar 

  6. Sculean A, Stavropoulos A, Windisch P, Keglevich T, Karring T, Gera I (2004) Healing of human intrabony defects following regenerative periodontal therapy with a bovine-derived xenograft and guided tissue regeneration. Clin Oral Investig 8(2):70–74. doi:10.1007/s00784-004-0254-7

    Article  PubMed  Google Scholar 

  7. Sculean A, Chiantella GC, Windisch P, Arweiler NB, Brecx M, Gera I (2005) Healing of intrabony defects following treatment with a composite bovine-derived xenograft (Bio-Oss Collagen) in combination with a collagen membrane (Bio-Gide PERIO). J Clin Periodontol 32(7):720–724. doi:10.1111/j.1600-051X.2005.00758.x

    Article  PubMed  Google Scholar 

  8. Sculean A, Schwarz F, Chiantella GC, Donos N, Arweiler NB, Brecx M, Becker J (2007) Five-year results of a prospective, randomized, controlled study evaluating treatment of intrabony defects with a natural bone mineral and GTR. J Clin Periodontol 34(1):72–77. doi:10.1111/j.1600-051X.2006.01007.x

    Article  PubMed  Google Scholar 

  9. Tonetti MS, Cortellini P, Lang NP, Suvan JE, Adriaens P, Dubravec D, Fonzar A, Fourmousis I, Rasperini G, Rossi R, Silvestri M, Topoll H, Wallkamm B, Zybutz M (2004) Clinical outcomes following treatment of human intrabony defects with GTR/bone replacement material or access flap alone. A multicenter randomized controlled clinical trial. J Clin Periodontol 31(9):770–776. doi:10.1111/j.1600-051X.2004.00562.x

    Article  PubMed  Google Scholar 

  10. Wikesjo UM, Selvig KA (1999) Periodontal wound healing and regeneration. Periodontol 2000 19:21–39

    Article  PubMed  Google Scholar 

  11. Schwarz F, Bieling K, Latz T, Nuesry E, Becker J (2006) Healing of intrabony peri-implantitis defects following application of a nanocrystalline hydroxyapatite (Ostim) or a bovine-derived xenograft (Bio-Oss) in combination with a collagen membrane (Bio-Gide): a case series. J Clin Periodontol 33(7):491–499. doi:10.1111/j.1600-051X.2006.00936.x

    Article  PubMed  Google Scholar 

  12. Kasaj A, Willershausen B, Reichert C, Rohrig B, Smeets R, Schmidt M (2008) Ability of nanocrystalline hydroxyapatite paste to promote human periodontal ligament cell proliferation. J Oral Sci 50(3):279–285

    Article  PubMed  Google Scholar 

  13. Chitsazi MT, Shirmohammadi A, Faramarzie M, Pourabbas R, Rostamzadeh A (2011) A clinical comparison of nano-crystalline hydroxyapatite (Ostim) and autogenous bone graft in the treatment of periodontal intrabony defects. Med Oral Patol Oral Cir Bucal 16(3):e448–e453

    Article  PubMed  Google Scholar 

  14. Horvath A, Stavropoulos A, Windisch P, Lukacs L, Gera I, Sculean A (2012) Histological evaluation of human intrabony periodontal defects treated with an unsintered nanocrystalline hydroxyapatite paste. Clin Oral Investig 17(2):423–30. doi:10.1007/s00784-012-0739-8

    Article  PubMed  Google Scholar 

  15. Carano RA, Filvaroff EH (2003) Angiogenesis and bone repair. Drug Discov Today 8(21):980–989

    Article  PubMed  Google Scholar 

  16. Busenlechner D, Tangl S, Arnhart C, Redl H, Schuh C, Watzek G, Gruber R (2012) Resorption of deproteinized bovine bone mineral in a porcine calvaria augmentation model. Clin Oral Implants Res 23(1):95–99. doi:10.1111/j.1600-0501.2011.02198.x

    Article  PubMed  Google Scholar 

  17. Busenlechner D, Tangl S, Fitzl C, Bernhart T, Gruber R, Watzek G (2009) Paste-like inorganic bone matrix: preclinical testing of a prototype preparation in the porcine calvaria. Clin Oral Implants Res 20(10):1099–1104. doi:10.1111/j.1600-0501.2009.01743.x

    Article  PubMed  Google Scholar 

  18. Chackartchi T, Iezzi G, Goldstein M, Klinger A, Soskolne A, Piattelli A, Shapira L (2011) Sinus floor augmentation using large (1–2 mm) or small (0.25–1 mm) bovine bone mineral particles: a prospective, intra-individual controlled clinical, micro-computerized tomography, and histomorphometric study. Clin Oral Implants Res 22(5):473–480. doi:10.1111/j.1600-0501.2010.02032.x

    Article  PubMed  Google Scholar 

  19. Zhou X, Zhang Z, Li S, Bai Y, Xu H (2011) Osteoconduction of different sizes of anorganic bone particles in a model of guided bone regeneration. Br J Oral Maxillofac Surg 49(1):37–41. doi:10.1016/j.bjoms.2010.01.001

    Article  PubMed  Google Scholar 

  20. Kim CS, Choi SH, Chai JK, Cho KS, Moon IS, Wikesjo UM, Kim CK (2004) Periodontal repair in surgically created intrabony defects in dogs: influence of the number of bone walls on healing response. J Periodontol 75(2):229–235. doi:10.1902/jop.2004.75.2.229

    Article  PubMed  Google Scholar 

  21. Kim CS, Choi SH, Cho KS, Chai JK, Wikesjo UM, Kim CK (2005) Periodontal healing in one-wall intrabony defects in dogs following implantation of autogenous bone or a coral-derived biomaterial. J Clin Periodontol 32(6):583–589. doi:10.1111/j.1600-051X.2005.00729.x

    Article  PubMed  Google Scholar 

  22. Yamada S, Shima N, Kitamura H, Sugito H (2002) Effect of porous xenographic bone graft with collagen barrier membrane on periodontal regeneration. Int J Periodontics Restor Dent 22(4):389–397

    Google Scholar 

  23. Sakata J, Abe H, Ohazama A, Okubo K, Nagashima C, Suzuki M, Hasegawa K (2006) Effects of combined treatment with porous bovine inorganic bone grafts and bilayer porcine collagen membrane on refractory one-wall intrabony defects. Int J Periodontics Restor Dent 26(2):161–169

    Google Scholar 

  24. Tal H, Artzi Z, Moses O, Nemcovsky C, Kozlovsky A (2005) Guided periodontal regeneration using bilayered collagen membranes and bovine bone mineral in fenestration defects in the canine. Int J Periodontics Restor Dent 25(5):509–518

    Google Scholar 

  25. Kim SH, Kim DY, Kim KH, Ku Y, Rhyu IC, Lee YM (2009) The efficacy of a double-layer collagen membrane technique for overlaying block grafts in a rabbit calvarium model. Clin Oral Implants Res 20(10):1124–1132. doi:10.1111/j.1600-0501.2009.01744.x

    Article  PubMed  Google Scholar 

  26. Kozlovsky A, Aboodi G, Moses O, Tal H, Artzi Z, Weinreb M, Nemcovsky CE (2009) Biodegradation of a resorbable collagen membrane (Bio-Gide) applied in a double-layer technique in rats. Clin Oral Implants Res 20(10):1116–1123. doi:10.1111/j.1600-0501.2009.01740.x

    Article  PubMed  Google Scholar 

  27. Sculean A, Chiantella GC, Arweiler NB, Becker J, Schwarz F, Stavropoulos A (2008) Five-year clinical and histologic results following treatment of human intrabony defects with an enamel matrix derivative combined with a natural bone mineral. Int J Periodontics Restor Dent 28(2):153–161

    Google Scholar 

  28. Stavropoulos A, Wikesjo UM (2010) Influence of defect dimensions on periodontal wound healing/regeneration in intrabony defects following implantation of a bovine bone biomaterial and provisions for guided tissue regeneration: an experimental study in the dog. J Clin Periodontol 37(6):534–543. doi:10.1111/j.1600-051X.2010.01566.x

    Article  PubMed  Google Scholar 

  29. Jensen B, Buser D (2009) Bone grafts and bone substitute materials for GBR procedures. In: Buser D (ed) 20 years of guided bone regeneration in implant dentistry, 2nd edn. Quintessence, Chicago, pp 71–96

    Google Scholar 

  30. Jensen SS, Broggini N, Hjorting-Hansen E, Schenk R, Buser D (2006) Bone healing and graft resorption of autograft, anorganic bovine bone, and beta-tricalcium phosphate. A histologic and histomorphometric study in the mandibles of minipigs. Clin Oral Implants Res 17(3):237–243. doi:10.1111/j.1600-0501.2005.01257.x

    Article  PubMed  Google Scholar 

  31. Jensen SS, Yeo A, Dard M, Hunziker E, Schenk R, Buser D (2007) Evaluation of a novel biphasic calcium phosphate in standardized bone defects: a histologic and histomorphometric study in the mandibles of minipigs. Clin Oral Implants Res 18(6):752–760. doi:10.1111/j.1600-0501.2007.01417.x

    Article  PubMed  Google Scholar 

  32. Jensen SS, Bornstein MM, Dard M, Bosshardt DD, Buser D (2009) Comparative study of biphasic calcium phosphates with different HA/TCP ratios in mandibular bone defects. A long-term histomorphometric study in minipigs. J Biomed Mater Res B Appl Biomater 90(1):171–181. doi:10.1002/jbm.b.31271

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Ms. Monika Aeberhard, Ms. Thuy-Trang Nguyen, and Mr. David Reist for the histological preparation of the specimens and Mr. Walter Bürgin for performing the statistical analyses. The study was funded by Geistlich Pharma, Wolhusen, Switzerland.

Conflict of interest

The authors report no conflicts of interest related to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sculean.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanovic, A., Bosshardt, D.D., Mihatovic, I. et al. Effect of pulverized natural bone mineral on regeneration of three-wall intrabony defects. A preclinical study. Clin Oral Invest 18, 1319–1328 (2014). https://doi.org/10.1007/s00784-013-1089-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-013-1089-x

Keywords

Navigation