Skip to main content

Advertisement

Log in

A novel three-dimensional bone chip organ culture

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Objectives

The objective of this study was to develop a 3D bone chip organ culture model. We aimed to collect in vitro evidence of the ability of vital bone chips to promote new bone formation.

Materials and methods

We developed a 3D in vitro hypoxic bone chip organ culture model. Histology of the bone chips was performed before and after culture and immunohistochemistry after 3-week culture. The 3D culture supernatants were tested for the presence of pro-angiogenic growth factors, TGFβ1, GADPH, bone alkaline phosphatase, osteocalcin, osteonectin, osteopontin, bone sialoprotein and collagen type I.

Results

Histology after culture revealed bone chips in a matrix of fibrin remnants and a fibrous-appearing matter. Collagen type I- and IV-positive structures were also identified. Cells could be seen on the surface of the bone chips, with spindle-shaped cells bridging the bone chip particles. Pro-angiogenic growth factors and TGFβ1were detected in the 3D cell culture supernatants. The transcripts for osteocalcin, bone sialoprotein and collagen type I were revealed only via PCR.

Conclusions

Our results indicate that bone chips in our 3D organ culture remain vital and may stimulate the growth of a bone-forming matrix.

Clinical relevance

The use of autogenous bone chips for oral and maxillofacial bone augmentation procedures is widespread in clinical practice. The rationale for this is that if bone chips remain vital in vivo, they could provide an environment promoting new bone formation through growth factors and cells. This 3D culture method is an essential tool for investigating the behaviour of bone chips.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. McAllister BS, Haghighat K (2007) Bone augmentation techniques. J Periodontol 78(3):377–396

    Article  PubMed  Google Scholar 

  2. Horch HH, Pautke C (2006) Regeneration instead of reparation: a critical review of the autogenous bone transplant as “golden standard” of reconstructive oral surgery. Mund Kiefer Gesichtschir 10(4):213–220

    Article  PubMed  Google Scholar 

  3. Simion M, Fontana F (2004) Autogenous and xenogeneic bone grafts for the bone regeneration. A literature review. Minerva Stomatol 53(5):191–206

    PubMed  Google Scholar 

  4. Eicker LA, Tomakidi P, Haessler D, Neugebauer J, Zöller JE (2002) Die Vitalität von gefilterten Knochenspänen zum präimplantologischen Knochenaufbau—Histochemische Untersuchungen und klinische Erfahrung. Z Zahnärztl Implantol 18(2):93–100

    Google Scholar 

  5. Kainulainen VT, Kainulainen TJ, Oikarinen KS, Carmichael RP, Sandor GK (2006) Performance of six bone collectors designed for dental implant surgery. Clin Oral Implants Res 17(3):282–287

    Article  PubMed  Google Scholar 

  6. Becktor JP, Hallstrom H, Isaksson S, Sennerby L (2008) The use of particulate bone grafts from the mandible for maxillary sinus floor augmentation before placement of surface-modified implants: results from bone grafting to delivery of the final fixed prosthesis. J Oral Maxillofac Surg 66(4):780–786

    Article  PubMed  Google Scholar 

  7. Zins JE, Whitaker LA (1983) Membranous versus endochondral bone: implications for craniofacial reconstruction. Plast Reconstr Surg 72(6):778–785

    Article  PubMed  Google Scholar 

  8. Wong RW, Rabie AB (1999) A quantitative assessment of the healing of intramembranous and endochondral autogenous bone grafts. Eur J Orthod 21(2):119–126

    Article  PubMed  Google Scholar 

  9. Ozaki W, Buchman SR (1998) Volume maintenance of onlay bone grafts in the craniofacial skeleton: micro-architecture versus embryologic origin. Plast Reconstr Surg 102(2):291–299

    Article  PubMed  Google Scholar 

  10. Clausen C, Hermund NU, Donatsky O, Nielsen H (2006) Characterization of human bone cells derived from the maxillary alveolar ridge. Clin Oral Implants Res 17(5):533–540

    Article  PubMed  Google Scholar 

  11. van Hinsbergh VW, Collen A, Koolwijk P (2001) Role of fibrin matrix in angiogenesis. Ann N Y Acad Sci 936:426–437

    Article  PubMed  Google Scholar 

  12. Unger RE, Sartoris A, Peters K, Motta A, Migliaresi C, Kunkel M, Bulnheim U, Rychly J, Kirkpatrick CJ (2007) Tissue-like self-assembly in cocultures of endothelial cells and osteoblasts and the formation of microcapillary-like structure on three-dimensional porous biomaterials. Biomaterials 28(27):3965–3976

    Article  PubMed  Google Scholar 

  13. Schenk RK, Olah AJ, Hermann W, Dickson GR (1984) Preparation of calcified tissues for light microscopy. In: Dickson GR (ed) Methods of calcified tissue preparation, 1st edn. Elsevier, Amsterdam, pp 1–56

    Google Scholar 

  14. Mailhot JM, Borke JL (1998) An isolation and in vitro culturing method for human intraoral bone cells derived from dental implant preparation sites. Clin Oral Implants Res 9(1):43–50

    Article  PubMed  Google Scholar 

  15. Sodek J, Berkman FA (1987) Bone cell cultures. Methods Enzymol 145:303–324

    Article  PubMed  Google Scholar 

  16. Declercq H, Van den Vreken N, De ME, Verbeeck R, Schacht E, De RL, Cornelissen M (2004) Isolation, proliferation and differentiation of osteoblastic cells to study cell/biomaterial interactions: comparison of different isolation techniques and source. Biomaterials 25(5):757–768

    Article  PubMed  Google Scholar 

  17. Richards RG, Simpson AE, Jaehn K, Furlong PI, Stoddart MJ (2007) Establishing a 3D ex vivo culture system for investigations of bone metabolism and biomaterial interactions. ALTEX 24 Spec No. 56-59

  18. Deckers M, van der Pluijm G, Dooijewaard S, Kroon M, van Hinsbergh V, Papapoulos S, Löwik C (2001) Effect of angiogenic and antiangiogenic compounds on the outgrowth of capillary structures from fetal mouse bone explants. Lab Invest 81(1):5–15

    Article  PubMed  Google Scholar 

  19. Mariotti AJ, Rumpf DA (1999) Chlorhexidine-induced changes to human gingival fibroblast collagen and non-collagen protein production. J Periodontol 70(12):1443–1448

    Article  PubMed  Google Scholar 

  20. Kuttenberger JJ, Hardt N, Rutz T, Pfyffer GE (2005) Bone collected with a bone collector during dental implant surgery. Mund Kiefer Gesichtschir 9(1):18–23

    Article  PubMed  Google Scholar 

  21. Pradel W, Tenbieg P, Lauer G (2005) Influence of harvesting technique and donor site location on in vitro growth of osteoblastlike cells from facial bone. Int J Oral Maxillofac Implants 20(6):860–866

    PubMed  Google Scholar 

  22. Chiriac G, Herten M, Schwarz F, Rothamel D, Becker J (2005) Autogenous bone chips: influence of a new piezoelectric device (Piezosurgery) on chip morphology, cell viability and differentiation. J Clin Periodontol 32(9):994–999

    Article  PubMed  Google Scholar 

  23. Hoegel F, Mueller CA, Peter R, Pfister U, Suedkamp NP (2004) Bone debris: dead matter or vital osteoblasts. J Trauma 56(2):363–367

    Article  PubMed  Google Scholar 

  24. Davies CM, Jones DB, Stoddart MJ, Koller K, Smith E, Archer CW, Richards RG (2006) Mechanically loaded ex vivo bone culture system ‘Zetos’: systems and culture preparation. Eur Cell Mater 11:57–75

    PubMed  Google Scholar 

  25. Belperio JA, Keane MP, Arenberg DA, Addison CL, Ehlert JE, Burdick MD, Strieter RM (2000) CXC chemokines in angiogenesis. J LeukocBiol 68(1):1–8

    Google Scholar 

  26. You WK, McDonald DM (2008) The hepatocyte growth factor/c-Met signaling pathway as a therapeutic target to inhibit angiogenesis. BMB Rep 41(12):833–839

    Article  PubMed  Google Scholar 

  27. Ito C, Akimoto T, Ioka T, Kobayashi T, Kusano E (2009) TGF-beta inhibits vascular sprouting through TGF-beta type I receptor in the mouse embryonic aorta. Tohoku J Exp Med 218(1):63–71

    Article  PubMed  Google Scholar 

  28. Cheung WH, Lee KM, Fung KP, Lui PY, Leung KS (2001) TGF-beta1 is the factor secreted by proliferative chondrocytes to inhibit neo-angiogenesis. J Cell Biochem Suppl Suppl 36:79–88

    Google Scholar 

  29. Pepper MS (1997) Transforming growth factor-beta: vasculogenesis, angiogenesis, and vessel wall integrity. Cytokine Growth Factor Rev 8(1):21–43

    Article  PubMed  Google Scholar 

  30. Rattner A, Sabido O, Massoubre C, Rascle F, Frey J (1997) Characterization of human osteoblastic cells: influence of the culture conditions. Vitro Cell Dev Biol Anim 33(10):757–762

    Article  Google Scholar 

  31. Kanczler JM, Oreffo RO (2008) Osteogenesis and angiogenesis: the potential for engineering bone. Eur Cell Mater 15:100–114

    PubMed  Google Scholar 

  32. Guillotin B, Bareille R, Bourget C, Bordenave L, Amedee J (2008) Interaction between human umbilical vein endothelial cells and human osteoprogenitors triggers pleiotropic effect that may support osteoblastic function. Bone 42(6):1080–1091

    Article  PubMed  Google Scholar 

  33. Guillotin B, Bourget C, Remy-Zolgadri M, Bareille R, Fernandez P, Conrad V, Medee-Vilamitjana J (2004) Human primary endothelial cells stimulate human osteoprogenitor cell differentiation. Cell Physiol Biochem 14(4–6):325–332

    Article  PubMed  Google Scholar 

  34. Fuchs S, Hofmann A, Kirkpatrick CJ (2007) Microvessel-like structures from outgrowth endothelial cells from human peripheral blood in 2-dimensional and 3-dimensional co-cultures with osteoblastic lineage cells. Tissue Eng 13(10):2577–2588

    Article  PubMed  Google Scholar 

  35. Hofmann A, Ritz U, Verrier S, Eglin D, Alini M, Fuchs S, Kirkpatrick CJ, Rommens PM (2008) The effect of human osteoblasts on proliferation and neo-vessel formation of human umbilical vein endothelial cells in a long-term 3D co-culture on polyurethane scaffolds. Biomaterials 29(31):4217–4226

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We appreciate the excellent work of Gisela Niklaus in establishing the 3D organ culture system, of Simone Wicki for PCR, Isabelle Estella for the histological and immunohistological staining, and thank PD Dr. Dobrila Nesic and Prof. Dr. Jan Lindhe for kindly reviewing this manuscript. We thank all colleagues from the Clinic for Oral and Maxillofacial Surgery, Luzerner Kantonsspital, who collected bone chips samples. We would also like to thank Archimed medical communication AG for their writing support.

Conflict of interest

This study was funded by Geistlich Pharma AG. B. M. Schaefer is an employee of Geistlich Pharma AG. No competing financial interests exist for J. Kuttenberger or E. Polska.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birgit M. Schaefer.

Additional information

This work was performed at Geistlich Pharma AG.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 35 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuttenberger, J., Polska, E. & Schaefer, B.M. A novel three-dimensional bone chip organ culture. Clin Oral Invest 17, 1547–1555 (2013). https://doi.org/10.1007/s00784-012-0833-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-012-0833-y

Keywords

Navigation