Skip to main content

Advertisement

Log in

Human periodontal ligament fibroblasts stimulated by nanocrystalline hydroxyapatite paste or enamel matrix derivative. An in vitro assessment of PDL attachment, migration, and proliferation

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

A Correction to this article was published on 24 August 2018

Abstract

We determined the effects of soluble or coated nanocrystalline hydroxyapatite paste (nano-HA) and enamel matrix derivative (EMD) on proliferation, adhesion, and migration of periodontal ligament fibroblasts (PDLs). Cultured PDLs were stimulated with nano-HA paste or EMD in a soluble form or were coated to the surface of cell culture dishes. Proliferation of PDLs on coated nano-HA and EMD was quantified by various methods including bromodeoxyuridine (BrdU) incorporation and Western blot. Cell migration was investigated in a modified Boyden chamber. The surface integrin profile of PDLs was determined using an integrin-specific ELISA, and integrin-specific signaling was measured by immunoblotting of phosphorylated focal adhesion kinase (FAK). Coated nano-HA stimulated PDL proliferation to a larger extent as compared with coated EMD. PDL migration towards a nano-HA or EMD gradient was more efficiently mediated by soluble EMD as compared with nano-HA but vice versa, adhesion of PDLs to compound-coated dishes was more effectively mediated by nano-HA as compared with EMD. Mechanistically, majorly integrin α5β1-mediated adhesion of PDL and both coated compounds mediated a significant increase in FAK activation though to a different extent. Current findings offer two different modes of action for EMD and nano-HA paste. EMD efficiently acts as a chemoattractant in its soluble form, while nano-HA paste effectively serves as a synthetic extracellular matrix component in its coated form. Our findings suggest that EMD and nano-HA paste display different molecular characteristics and apply alternative routes to mediate their beneficial effects on periodontal tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pietruska MD (2001) A comparative study on the use of Bio-Oss® and enamel matrix derivative (Emdogain®) in the treatment of periodontal bone defects. Eur J Oral Sci 109:178–181

    Article  PubMed  Google Scholar 

  2. Vouros I, Aristodimou E, Konstantinidis A (2004) Guided tissue regeneration in intrabony periodontal defects following treatment with two bioabsorbable membranes in combination with bovine mineral graft. A clinical and radiographic study. J Clin Periodontol 31:908–917

    Article  PubMed  Google Scholar 

  3. Sculean A, Chiantella GC, Windisch P, Arweiler NB, Brecx M, Gera I (2005) Healing of intra-bony defects following treatment with a composite bovine-derived xenograft (Bio-Oss Collagen) in combination with a collagen membrane (Bio-Gide PERIO). J Clin Periodontol 32:720–724

    Article  PubMed  Google Scholar 

  4. Sculean A, Stavropoulos A, Berakdar M, Windisch P, Karring T, Brecx M (2005) Formation of human cementum following different modalities of regenerative therapy. Clin Oral Investig 9:58–64

    Article  PubMed  Google Scholar 

  5. Aspriello SD, Ferrante L, Rubini C, Piemontese M (2011) Comparative study of DFDBA in combination with enamel matrix derivative versus DFDBA alone for treatment of periodontal intrabony defects at 12 months post-surgery. Clin Oral Investig 15:225–232

    Article  PubMed  Google Scholar 

  6. Tonetti M, Pini-Prato G, Cortellini P (1996) Factors affecting the healing response of intrabony defects following guided tissue regeneration and access flap surgery. J Clin Periodontol 23:548–556

    Article  PubMed  Google Scholar 

  7. DeSanctis M, Clauser C, Zucchelli G (1996) Bacterial colonization of resorbable barrier materials and periodontal regeneration. J Periodontol 67:1193–1200

    Article  Google Scholar 

  8. Park JS, Suh JJ, Choi SH, Moon IS, Cho KS, Kim CK, Chai JK (2001) Effects of pretreatment clinical parameters on bioactive glass implantation in intrabony periodontal defects. J Periodontol 72:730–740

    Article  PubMed  Google Scholar 

  9. Trombelli L, Heitz-Mayfield L, Needleman I, Moles D, Scabbia A (2002) A systematic review of graft materials and biological agents for periodontal intraosseous defects. J Clin Periodontol 29:117–135

    Article  PubMed  Google Scholar 

  10. Stahl SS, Froum SJ, Tarnow D (1990) Human clinical and histologic responses to the placement of HTR polymer particles in 11 intrabony lesions. J Periodontol 61:269–274

    Article  PubMed  Google Scholar 

  11. Nevins ML, Camelo M, Nevins M, King CJ, Oringer RJ, Schenk RK, Fiorellini JP (2000) Human histologic evaluation of bioactive ceramic in the treatment of periodontal osseous defects. Int J Periodontics Restor Dent 20:458–467

    Google Scholar 

  12. Bezrukov VM, Grigor’iants LA, Zuev VP, Pankratov AS (1998) The surgical treatment of jaw cysts using hydroxyapatite with an ultrahigh degree of dispersity. Stomatologiia Mosk 77:31–35

    PubMed  Google Scholar 

  13. Thorwarth M, Schultze-Mosgau S, Kessler P, Wiltfang J, Schlegel KA (2005) Bone regeneration in osseous defects using a resorbable nanoparticular hydroxyapatite. J Oral Maxillofac Surg 63:1626–1633

    Article  PubMed  Google Scholar 

  14. Huber FX, Mcarthur N, Hillmeier J, Kock HJ, Baier M, Diwo M, Berger I, Meeder PJ (2006) Void filling of tibia compression fracture zones using a novel resorbable nanocrystalline hydroxyapatite paste in combination with a hydroxyapatite ceramic core: first clinical results. Arch Orthop Trauma Surg 126:533–540

    Article  PubMed  Google Scholar 

  15. Grigor’ian AS, Grigor’iants LA, Podoinikova MN (2000) A comparative analysis of the efficacy of different types of filling materials in the surgical elimination of tooth perforations (experimental morphological research). Stomatologiia Mosk 79:9–12

    PubMed  Google Scholar 

  16. Gerlach KL, Niehues D (2007) Treatment of jaw cysts with a new kind of nanoparticular hydroxylapatite. Mund Kiefer Gesichtschir 11:131–137

    Article  PubMed  Google Scholar 

  17. Schwarz F, Bieling K, Latz T, Nuesry E, Becker J (2006) Healing of intrabony peri-implantitis defects following application of a nanocrystalline hydroxyapatite (OstimTM) or a bovine-derived xenograft (Bio-OssTM) in combination with a collagen membrane (Bio-GideTM). A case series. J Clin Periodontol 33:491–499

    Article  PubMed  Google Scholar 

  18. Kasaj A, Röhrig B, Zafiropoulos GG, Willershausen B (2008) Clinical evaluation of nanocrystalline hydroxyapatite paste in the treatment of human periodontal bony defects—a randomized controlled clinical trial: 6-month results. J Periodontol 79:394–400

    Article  PubMed  Google Scholar 

  19. Heinz B, Kasaj A, Teich M, Jepsen S (2010) Clinical effects of nanocrystalline hydroxyapatite paste in the treatment of intrabony periodontal defects: a randomized controlled clinical study. Clin Oral Investig 14:525–531

    Article  PubMed  Google Scholar 

  20. Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R (2000) Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J Biomed Mater Res 51:475–483

    Article  PubMed  Google Scholar 

  21. Chris Arts JJ, Verdonschot N, Schreurs BW, Buma P (2006) The use of a bioresorbable nano-crystalline hydroxyapatite paste in acetabular bone impaction grafting. Biomaterials 27:1110–1118

    Article  PubMed  Google Scholar 

  22. Balasundaram G, Sato M, Webster TJ (2006) Using hydroxyapatite nanoparticles and decreased crystallinity to promote osteoblast adhesion similar to functionalizing with RGD. Biomaterials 27:2798–2805

    Article  PubMed  Google Scholar 

  23. Pezzatini S, Solito R, Morbidelli L, Lamponi S, Boanini E, Bigi A, Ziche M (2006) The effect of hydroxyapatite nanocrystals on microvascular endothelial cell viability and functions. J Biomed Mater Res A 76:656–663

    PubMed  Google Scholar 

  24. Sun W, Chu C, Wang J, Zhao H (2007) Comparison of periodontal ligament cells responses to dense and nanophase hydroxyapatite. J Mater Sci Mater Med 18:677–683

    Article  PubMed  Google Scholar 

  25. Zhang YF, Cheng XR, Chen Y, Shi B, Chen XH, Xu DX, Ke J (2007) Three- dimensional nanohydroxyapatite/chitosan scaffolds as potential tissue engineered periodontal tissue. J Biomater Appl 21:333–349

    Article  PubMed  Google Scholar 

  26. Ivanovski S, Haase HR, Bartold PM (2001) Isolation and characterization of fibroblasts derived from regenerating human periodontal defects. Arch Oral Biol 72:324–330

    Google Scholar 

  27. Rauschmann MA, Wichelhaus TA, Stirnal V, Dingeldein E, Zichner L, Schnettler R, Alt V (2005) Nanocrystalline hydroxyapatite and calcium sulphate as biodegradable composite carrier material for local delivery of antibiotics in bone infections. Biomaterials 26:2677–2684

    Article  PubMed  Google Scholar 

  28. Gestrelius S, Sp L, Hammarström L (2000) Emdogain—periodontal regeneration based on biomimicry. Clin Oral Investig 4:120–125

    Article  PubMed  Google Scholar 

  29. Ponik SM, Pavalko FM (2004) Formation of focal adhesions on fibronectin promotes fluid shear stress induction of COX-2 and PGE2 release in MC3T3-E1 osteoblasts. J Appl Physiol 97:135–142

    Article  PubMed  Google Scholar 

  30. Stein RC, Waterfield M (2000) PI3-kinase inhibition: a target for drug development? Mol Med Today 6:347–357

    Article  PubMed  Google Scholar 

  31. Ferraz MP, Mateus AY, Sousa JC, Monteiro FJ (2007) Nanohydroxyapatite microspheres as delivery system for antibiotics: release kinetics, antimicrobial activity, and interaction with osteoblasts. J Biomed Mater Res A 81:994–1004

    PubMed  Google Scholar 

  32. Gestrelius S, Andersson C, Lidström D, Hammarström L, Somerman M (1997) In vitro studies on periodontal ligament cells and enamel matrix derivative. J Clin Periodontol 24:685–692

    Article  PubMed  Google Scholar 

  33. Schwarz F, Rothamel D, Herten M, Sculean A, Scherbaum W, Becker J (2004) Effect of enamel matrix protein derivative on the attachment, proliferation, and viability of human SaOs2 osteoblasts on titanium implants. Clin Oral Investig 8:165–171

    Article  PubMed  Google Scholar 

  34. Hoang AM, Klebe RJ, Steffensen B, Ryu OH, Simmer JP, Cochran DL (2002) Amelogenin is a cell adhesion protein. J Dent Res 81:497–500

    Article  PubMed  Google Scholar 

  35. Fu Q, Zhou N, Huang W, Rahaman MN, Wang D, Zhang L, Li H (2008) In vitro study on different cell response to spherical hydroxyapatite nanoparticles. J Biomater Appl 23:37–50

    Article  Google Scholar 

  36. Mateus AY, Barrias CC, Ribeiro C, Ferraz MP, Monteiro FJ (2008) Comparative study of nanohydroxyapatite microspheres for medical applications. J Biomed Mater Res A 86:483–493

    PubMed  Google Scholar 

  37. Webster TJ, Schadler LS, Siegel RW, Bizios R (2001) Mechanisms of enhanced osteoblast adhesion on nanophase alumina involve vitronection. Tissue Eng 7:291–301

    Article  PubMed  Google Scholar 

  38. Chong CH, Carnes DL, Moritz AJ, Oates T, Ryu OH, Simmer J, Cochran DL (2006) Human periodontal fibroblast response to enamel matrix derivative, amelogenin, and platelet-derived growth factor-BB. J Periodontol 77:1242–1252

    Article  PubMed  Google Scholar 

  39. Kasaj A, Willershausen B, Reichert C, Röhrig B, Smeets R, Schmidt M (2008) Ability of nanocrystalline hydroxyapatite paste to promote human periodontal ligament cell proliferation. J Oral Sci 50:279–285

    Article  PubMed  Google Scholar 

  40. Zou JX, Wang B, Kalo MS, Zisch AH, Pasquale EB, Ruoslahti E (1999) An Eph receptor regulates integrin activity through R-Ras. Proc Natl Acad Sci USA 96:13813–13818

    Article  PubMed  Google Scholar 

  41. Burbach BJ, Medeiros RB, Mueller KL, Shimizu Y (2007) T-cell receptor signaling to integrins. Immunol Rev 218:65–81

    Article  PubMed  Google Scholar 

  42. Hatakeyama J, Hatakeyama Y, Takahashi I, Suzuki O, Sasano Y (2007) Proliferation and adhesion of periodontal ligament cells on synthetic biominerals. Oral Dis 13:500–506

    Article  PubMed  Google Scholar 

  43. Miyamoto S, Teramoto H, Gutkind JS, Yamada KM (1996) Integrins can collaborate with growth factors for phosphorylation of receptor tyrosin kinases and MAP kinase activation: roles of integrin aggregation and occupancy of receptors. J Cell Biol 135:1633–1642

    Article  PubMed  Google Scholar 

  44. Kasaj A, Willershausen B, Reichert C, Gortan-Kasaj A, Zafiropoulos GG, Schmidt M (2008) Human periodontal fibroblast response to a nanostructured hydroxyapatite bone replacement graft in vitro. Arch Oral Biol 53:683–689

    Article  PubMed  Google Scholar 

  45. Garcia AJ (2005) Get a grip: integrins in cell-biomaterial interactions. Biomaterials 26:7525–7529

    Article  PubMed  Google Scholar 

  46. de Ruijter JE, ter Brugge PJ, Dieudonné SC, van Vliet SJ, Torensma R, Jansen JA (2001) Analysis of integrin expression in U2OS cells cultured on various calcium phosphate ceramic substrates. Tissue Eng 7:279–289

    Article  PubMed  Google Scholar 

  47. Zeichner-David M, Chen LS, Hsu Z, Reyna J, Caton J, Bringas P (2006) Amelogenin and ameloblastin show growth-factor like activity in periodontal ligament cells. Eur J Oral Sci 114:244–253

    Article  PubMed  Google Scholar 

  48. Suzuki S, Nagano T, Yamakoshi Y, Gomi K, Arai T, Fukae M, Katagiri T, Oida S (2005) Enamel matrix derivative stimulates signal transduction of BMP and TGF-beta. J Dent Res 84:510–514

    Article  PubMed  Google Scholar 

  49. Leitinger B, McDowall A, Stanley P, Hogg N (2000) The regulation of integrin function by Ca(2+). Biochim Biophys Acta 1498:91–98

    Article  PubMed  Google Scholar 

  50. Van der Pauw MTM, Everts V, Beertsen W (2002) Expression of integrins by human periodontal ligament and gingival fibroblasts and their involvement in fibroblast adhesion to enamel matrix-derived proteins. J Periodontal Res 37:317–323

    Article  PubMed  Google Scholar 

  51. Guan JL (1997) Focal adhesion kinase in integrin signaling. Matrix Biol 16:195–200

    Article  PubMed  Google Scholar 

  52. Zamir E, Geiger B (2001) Molecular complexity and dynamics of cell-matrix adhesions. J Cell Sci 114:3583–3590

    PubMed  Google Scholar 

  53. Sautier JM, Nefussi JR, Boulekbache H, Forest N (1990) In vitro bone formation on coral granules. In Vitro Cell Dev Biol 26:1079–1085

    Article  PubMed  Google Scholar 

  54. Alliot-Licht B, Gregoire M, Orly I, Menanteau J (1991) Cellular activity of osteoblasts in the presence of hydroxyapatite: an in vitro experiment. Biomaterials 12:752–756

    Article  PubMed  Google Scholar 

  55. Bauer TW, Muschler GF (2000) Bone graft materials. An overview of the basic science. Clin Orthop Relat Res 371:10–27

    Article  PubMed  Google Scholar 

  56. Alliot-Licht B, Delange GL, Gregoire M (1997) Effects of hydroxyapatite particles on periodontal ligament fibroblast-like cell behavior. J Periodontol 68:158–165

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

No benefit of any kind will be received either directly or indirectly by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Kasaj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kasaj, A., Willershausen, B., Junker, R. et al. Human periodontal ligament fibroblasts stimulated by nanocrystalline hydroxyapatite paste or enamel matrix derivative. An in vitro assessment of PDL attachment, migration, and proliferation. Clin Oral Invest 16, 745–754 (2012). https://doi.org/10.1007/s00784-011-0570-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-011-0570-7

Keywords

Navigation