Skip to main content
Log in

9-Isothiocyanatoacridines: Convenient Synthons for New Functionalized 9-Acridinyl Derivatives

  • Published:
Molecules

Abstract

The specific physicochemical and spectral properties (dipole moments, NMR and fluorescence spectra) of 2- and 4-substituted 9-isothiocyanatoacridines were studied and compared with the series of m, p-substituted phenyl and benzoyl isothiocyanates. The high reactivity of heterocumulene bonds in the NCS group and that of 9 and 10 position in the acridine skeleton were utilized for the synthesis of new types of compounds, e.g. spiro dihydroacridine 9(10H),4′-thiazolines. Iminothiocarbonates or dithiocarbamates are the intermediates of these unusual addition-cyclization reactions. A new reagent, 1-azonium-4-azabicyclo[2.2.2]octane hydrogen-sulfide [DABCOH](+)SH(−), was developed for the preparation of hitherto inaccesible 9-acridinyl dithiocarbamates as well as 3-(9′-acridinyl)-5-substituted tetrahydro-1,3,5-thiadiazine-2-thiones. The reaction of iminothiocarbonates with bromoacetyl bromide represents a general method for the synthesis of 3-substituted 1,3-thiazolidine-2,4-diones from various type of isothiocyanates. The reaction of 9-hydrazinoacridine with 1-isothiocyanato-1-ethoxy-propane affords, instead of the expected 1,2,4-thiazoline derivative, the N-acridinium-9-yl-N’-propylidenehydrazine thiocyanate. The structures of the synthesized compounds were confirmed with IR, NMR, MAS spectra and X-ray analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. (a) Drobnica, L.; Kristian, P.; Augustín, J. In The Chemistry of Cyanates and Their Thio Derivatives; Patai, S. Ed; Wiley: New York, 1977; Part 2, Chap. 22, pp. 1003. (b) Murkerjee, A. K.; Ashare, R. Chem. Rev. 1991, 91, 1.

  2. (a) In Acridines; Acheson, R. M. Ed.; Wiley: New York, 1973. (b) Berman, I.; Brown, L.; Miller, R.; Andersen, S. L.; McGreevy, P.; Schuster, B. G.; Ellis, W.; Ager, A.; Rossan, R. Antimicrob. Agents Chemotherapy 1994, 39, 1753. (c) Figgitt, D. P.; Denny, W. A.; Gamage, S. A.; Ralph, R. K. Anti-Cancer Drug Design 1994 9, 199. (d) Sârbu, C.; Marutoin, C.; Vlassa, M.; Liteanu, C. Talanta 1987 34, 438.

  3. (a) Antoš, K.; Martvon, A.; Kristian, P. Collect. Czech. Chem. Commun. 1966, 31, 3737. (b) Kristian, P.; Hritzová, O.; Talán, P. Collect. Czech. Chem. Commun. 1977, 42, 671. (c) Danihel, I.; Suchár, G. Collect. Czech. Chem.Commun. 1993, 58, 378. (d) Danihel, I.; Suchár, G.; Kristian, P.; Böhm, S. Collect. Czech. Chem. Commun. 1996, 61, 1615.

    Article  Google Scholar 

  4. Kristian, P.; Antoš, K.; Vlachová, D.; Zahradník, R. Collect. Czech. Chem. Commun. 1963, 28, 1651.

    Article  Google Scholar 

  5. Mazagová, D.; Sabolová, D.; Kristian, P.; Imrich, J.; Antalík, M.; Podhradský, D. Collect. Czech. Chem. Commun. 1994, 59, 203.

    Article  Google Scholar 

  6. (a) Kristian, P.; Kovác, Š.; Antoš, K. Collect. Czech. Chem. Commun. 1964, 29, 2507. (b) Danihel, I.; Imrich, J.; Košcík, D.; Kristian, P.; Barancíková, G. Collect. Czech. Chem. Commun. 1987, 52, 2115. (c) Danihel, I.; Kristian, P.; Böhm, S.; Kuthan, J. Chem. Papers 1994, 59, 2632.

    Article  CAS  Google Scholar 

  7. (a) Imrich, J.; Kristian, P.; Podhradský, D.; Dzurilla, M. Collect. Czech. Chem. Commun. 1980, 45, 2334. (b) Mazagová, D.; Kristian, P.; Suchár, G.; Imrich, J.; Antalík, M. Collect. Czech. Chem. Commun. 1994, 59, 6232. (c) Podhradský, D. Oravec, P.; Antalík, M.; Kristian, P. Collect. Czech. Chem. Commun. 1994, 59, 213.

    Article  CAS  Google Scholar 

  8. Danihel, I.; Imrich, J.; Kristian, P.; Liptaj, T.; Mazagová, D. Collect. Czech. Chem. Commun. 1994, 59, 1833.

    Article  CAS  Google Scholar 

  9. (a) Sabolová, D.; Mazagová, D.; Kristian, P.; Antalík, M.; Podhradský, D.; Imrich, J. Collect. Czech. Chem. Commun. 1994, 59, 1682. (b) Kristian, P.; Bernát, J.; Mazagová, D.; Antalík, M. Heterocycles 1995, 40, 837.

    Article  Google Scholar 

  10. (a) Jale, A. L. J. Am. Chem. Soc. 1953, 75, 675. (b) Kristan, P.; Bernát, J. Tetrahedron Lett. 1968, 679. (c) Yamaguchi, M.; Ohi, H. PTC Int. Appl. WO 1992, 92, 13835; Chem. Abstr. 1993, 118, 124211.

    Article  Google Scholar 

  11. Bernát, J.; Kristian, P.; Imrich, J.; Chomca, I. Synth. Commun. 1996, 26, 4343.

    Article  Google Scholar 

  12. Kristian, P.; Hocová, S.; Imrich, J.; Bernát, J.; Bušová, T. Chem. Papers (in press).

  13. (a) Bernát, J.; Kristian, P.; Imrich, J.; Mazagová, D.; Cernák, J.; Bušová, T.; Lipkowski, J. Synth. Commun. 1995, 25, 3973. (b) Cernák, J.; Kristian, P.; Bernát, J.; Lipkowski, J. Acta Cryst. 1995, C51, 2397.

    Article  Google Scholar 

  14. Imrich, J.; Bernát, J.; Bušová, T.; Hocová, S. Collect. Czech. Chem. Commun. 1996, 61, 432.

    Article  CAS  Google Scholar 

  15. Bernát, J.; Kristian, P.; Guspanová, J.; Imrich, J.; Bušová, T. Collect. Czech. Chem. Commun. (to be published).

  16. Linden, A.; Guspanová, J.; Bernát, J.; Kristian, P. Acta Cryst. C (to be published).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavol Kristian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kristian, P., Bernát, J., Imrich, J. et al. 9-Isothiocyanatoacridines: Convenient Synthons for New Functionalized 9-Acridinyl Derivatives. Molecules 1, 181–189 (1996). https://doi.org/10.1007/s007830050036

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s007830050036

Keywords

Navigation