Skip to main content
Log in

In vitro and in vivo accumulation of the anticancer Ru complexes [RuII(cym)(HQ)Cl] and [RuII(cym)(PCA)Cl]Cl

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The cellular accumulation and the underlying mechanisms for the two ruthenium-based anticancer complexes [RuII(cym)(HQ)Cl] 1 (cym = η6-p-cymene, HQ = 8-hydroxyquinoline) and [RuII(cym)(PCA)Cl]Cl 2 (PCA = N-fluorophenyl-2-pyridinecarbothioamide) were investigated in HCT116 human colorectal carcinoma cells. The results showed that the cellular accumulation of both complexes increased over time and with higher concentrations, and that 2 accumulates in greater quantities in cells than 1. Inhibition studies of selected cellular accumulation mechanisms indicated that both 1 and 2 may be transported into the cells by both passive diffusion and active transporters, similar to cisplatin. Efflux experiments indicated that 1 and 2 are subjected to efflux through a mechanism that does not involve p-glycoprotein, as addition of verapamil did not make any difference. Exploring the influence of the Cu transporter by addition of CuCl2 resulted in a higher accumulation of 1 and 2 whilst the amount of Pt detected was slightly reduced when cells were treated with cisplatin. Complexes 1 and 2 were further explored in zebrafish where accumulation and distribution were determined with ICP-MS and LA-ICP-MS. The results correlated with the in vitro observations and zebrafish treated with 2 showed higher Ru contents than those treated with 1. The distribution studies suggested that both complexes mainly accumulated in the intestines of the zebrafish.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ndagi UMN, Soliman ME (2017) Drug Des Dev Ther 11:599–616

    Article  CAS  Google Scholar 

  2. Anthony EJ, Bolitho EM, Bridgewater HE, Carter OWL, Donnelly JM, Imberti C, Lant EC, Lermyte F, Needham RJ, Palau M, Sadler PJ, Shi H, Wang F-X, Zhang W-Y, Zhang Z (2020) Chem Sci 11:12888–12917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yousuf I, Bashir M, Arjmand F, Tabassum S (2021) Coord Chem Rev 445:214104

    Article  CAS  Google Scholar 

  4. Gobec M, Kljun J, Sosic I, Mlinaric-Rascan I, Ursic M, Gobec S, Turel I (2014) Dalton Trans 43:9045–9051

    Article  CAS  PubMed  Google Scholar 

  5. Kubanik M, Holtkamp H, Söhnel T, Jamieson SMF, Hartinger CG (2015) Organometallics 34:5658–5668

    Article  CAS  Google Scholar 

  6. Arshad J, Hanif M, Movassaghi S, Kubanik M, Waseem A, Söhnel T, Jamieson SMF, Hartinger CG (2017) J Inorg Biochem 177:395–401

    Article  CAS  PubMed  Google Scholar 

  7. Movassaghi S, Hanif M, Holtkamp HU, Söhnel T, Jamieson SMF, Hartinger CG (2018) Dalton Trans 47:2192–2201

    Article  CAS  PubMed  Google Scholar 

  8. Kljun J, Leon IE, Persic S, Cadavid-Vargas JF, Etcheverry SB, He W, Bai Y, Turel I (2018) J Inorg Biochem 186:187–196

    Article  CAS  PubMed  Google Scholar 

  9. Meng T, Qin Q-P, Chen Z-L, Zou H-H, Wang K, Liang F-P (2019) Dalton Trans 48:5352–5360

    Article  CAS  PubMed  Google Scholar 

  10. Tremlett WDJ, Tong KKH, Steel TR, Movassaghi S, Hanif M, Jamieson SMF, Sohnel T, Hartinger CG (2019) J Inorg Biochem 199:110768

    Article  CAS  PubMed  Google Scholar 

  11. Meier SM, Hanif M, Adhireksan Z, Pichler V, Novak M, Jirkovsky E, Jakupec MA, Arion VB, Davey CA, Keppler BK, Hartinger CG (2013) Chem Sci 4:1837–1846

    Article  CAS  Google Scholar 

  12. Domotor O, Pape VFS, May NV, Szakacs G, Enyedy EA (2017) Dalton Trans 46:4382–4396

    Article  CAS  PubMed  Google Scholar 

  13. Giringer K, Holtkamp HU, Movassaghi S, Tremlett WDJ, Lam NYS, Kubanik M, Hartinger CG (2018) Electrophoresis 39:1201–1207

    Article  CAS  PubMed  Google Scholar 

  14. Domotor O, Pivarcsik T, Meszaros JP, Szatmari I, Fulop F, Enyedy EA (2021) Dalton Trans 50:11918–11930

    Article  CAS  PubMed  Google Scholar 

  15. Riisom M, Eade L, Tremlett WDJ, Hartinger CG (2022) Metallomics 14:mfac43

    Article  Google Scholar 

  16. Meier SM, Kreutz D, Winter L, Klose MHM, Cseh K, Weiss T, Bileck A, Alte B, Mader JC, Jana S, Chatterjee A, Bhattacharyya A, Hejl M, Jakupec MA, Heffeter P, Berger W, Hartinger CG, Keppler BK, Wiche G, Gerner C (2017) Angew Chem Int Ed 56:8267–8271

    Article  CAS  Google Scholar 

  17. Klose MHM, Theiner S, Kornauth C, Meier-Menches SM, Heffeter P, Berger W, Koellensperger G, Keppler BK (2018) Metallomics 10:388–396

    Article  CAS  PubMed  Google Scholar 

  18. Yano E, Riisom M, Tong KKH, Hanif M, Leung E, Hartinger CG (2021) Anal Methods 13:1463–1469

    Article  CAS  PubMed  Google Scholar 

  19. Clavel CM, Păunescu E, Nowak-Sliwinska P, Griffioen AW, Scopelliti R, Dyson PJ (2015) J Med Chem 58:3356–3365

    Article  CAS  PubMed  Google Scholar 

  20. Zeng L, Gupta P, Chen Y, Wang E, Ji L, Chao H, Chen Z-S (2017) Chem Soc Rev 46:5771–5804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ishida S, Lee J, Thiele DJ, Herskowitz I (2002) Proc Natl Acad Sci 99:14298–14302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kuo MT, Chen HHW, Song I-S, Savaraj N, Ishikawa T (2007) Cancer Metastasis Rev 26:71–83

    Article  CAS  PubMed  Google Scholar 

  23. Foster DR, Landowski CP, Zheng X, Amidon GL, Welage LS (2009) Pharmacol Res 59:215–220

    Article  CAS  PubMed  Google Scholar 

  24. Scow JS, Madhavan S, Chaudhry RM, Zheng Y, Duenes JA, Sarr MG (2011) J Surg Res 170:17–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kuo MT, Fu S, Savaraj N, Chen HHW (2012) Cancer Res 72:4616–4621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Akerfeldt MC, Tran CMN, Shen C, Hambley TW, New EJ (2017) J Biol Inorg Chem 22:765–774

    Article  CAS  PubMed  Google Scholar 

  27. Wang L, Sun Y (2020) Arch Biochem Biophys 696:108675

    Article  CAS  PubMed  Google Scholar 

  28. Puckett CA, Barton JK (2008) Biochemistry 47:11711–11716

    Article  CAS  PubMed  Google Scholar 

  29. Romero-Canelón I, Pizarro AM, Habtemariam A, Sadler PJ (2012) Metallomics 4:1271–1279

    Article  PubMed  Google Scholar 

  30. Spreckelmeyer S, Orvig C, Casini A (2014) Molecules 19:15584–15610

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yu Q, Liu Y, Xu L, Zheng C, Le F, Qin X, Liu Y, Liu J (2014) Eur J Med Chem 82:82–95

    Article  CAS  PubMed  Google Scholar 

  32. MacRae CA, Peterson RT (2015) Nat Rev Drug Discovery 14:721–731

    Article  CAS  PubMed  Google Scholar 

  33. Karas BF, Hotz JM, Gural BM, Terez KR, DiBona VL, Côrte-Real L, Valente A, Buckley BT, Cooper KR (2021) Toxicol Sci 182:29–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cagan RL, Zon LI, White RM (2019) Dev Cell 49:317–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Patton EE, Zon LI, Langenau DM (2021) Nat Rev Drug Discov 20:611–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Egger AE, Rappel C, Jakupec MA, Hartinger CG, Heffeter P, Keppler BK (2009) J Anal At Spectrom 24:51–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Støving-Dam C, Alejo-Perez-Henarejos S, Tsolakou T, Alexander-Segato C, Gammelgaard B, Yellol GS, Ruiz J, Henry-Lambert I, Stürup S (2015) Metallomics 7:885–895

    Article  PubMed  Google Scholar 

  38. Ratanaphan A, Nhukeaw T, Hongthong K, Dyson JP (2017) Anti-Cancer Agents Med Chem 17:212–220

    Article  CAS  Google Scholar 

  39. Garmann D, Warnecke A, Kalayda GV, Kratz F, Jaehde U (2008) J Control Release 131:100–106

    Article  CAS  PubMed  Google Scholar 

  40. Côrte-Real L, Brás AR, Pilon A, Mendes N, Ribeiro AS, Martins TD, Farinha JPS, Oliveira MC, Gärtner F, Garcia MH, Preto A, Valente A (2022) Pharmaceutics 14:1388

    Article  PubMed  PubMed Central  Google Scholar 

  41. Andrews PA, Velury S, Mann SC, Howell SB (1988) Cancer Res 48:68–73

    CAS  PubMed  Google Scholar 

  42. Binks SP, Dobrota M (1990) Biochem Pharmacol 40:1329–1336

    Article  CAS  PubMed  Google Scholar 

  43. Gately DP, Howell SB (1993) Br J Cancer 67:1171–1176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Arnesano F, Natile G (2021) Semin Cancer Biol 76:173–188

    Article  CAS  PubMed  Google Scholar 

  45. Aird RE, Cummings J, Ritchie AA, Muir M, Morris RE, Chen H, Sadler PJ, Jodrell DI (2002) Br J Cancer 86:1652–1657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gupta S, Cohen KA, Winglee K, Maiga M, Diarra B, Bishai WR (2014) Antimicrob Agents Chemother 58:574–576

    Article  PubMed  PubMed Central  Google Scholar 

  47. Xu J, Tasneen R, Peloquin CA, Almeida DV, Li S-Y, Barnes-Boyle K, Lu Y, Nuermberger E (2018) Antimicrob Agents Chemother 62:e01692-e11617

    Article  PubMed  Google Scholar 

  48. Clausen MV, Hilbers F, Poulsen H (2017) Front Physiol 8:00371

    Article  Google Scholar 

  49. Cotero VB, Rebolledo-Antúnez S, Ortega-Blake I (1998) Biochim Biophys Acta Biomembr 1375:43–51

    Article  CAS  Google Scholar 

  50. Kristanc L, Božič B, Jokhadar ŠZ, Dolenc MS, Gomišček G (2019) Biochim Biophys Acta Biomembr 1861:418–430

    Article  CAS  PubMed  Google Scholar 

  51. Bompiani KM, Tsai C-Y, Achatz FP, Liebig JK, Howell SB (2016) Metallomics 8:951–962

    Article  CAS  PubMed  Google Scholar 

  52. Alison KH, Gerald HM, Stephen BH (2006) Mol Pharmacol 70:1390

    Article  Google Scholar 

  53. Tardito S, Barilli A, Bassanetti I, Tegoni M, Bussolati O, Franchi-Gazzola R, Mucchino C, Marchiò L (2012) J Med Chem 55:10448–10459

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M.R. thanks Knud Højgaards Fond, Dagmar Marshalls Fond, Christian og Ottilia Brorsons Rejselegat for yngre videnskabsmænd – og kvinder, Carl og Ellen Hertz’ legat til Dansk Læge- og Naturvidenskab, Viet-Jacobsen Fonden, Eva & Henry Frænkels Mindefond and Direktør Jacob Madsens og Hustru Olga Madsens Fond for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian G. Hartinger.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 256 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riisom, M., Morrow, S.J., Herbert, C.D. et al. In vitro and in vivo accumulation of the anticancer Ru complexes [RuII(cym)(HQ)Cl] and [RuII(cym)(PCA)Cl]Cl. J Biol Inorg Chem 28, 767–775 (2023). https://doi.org/10.1007/s00775-023-02026-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-023-02026-w

Keywords

Navigation