Skip to main content
Log in

Synthesis, structure and anticancer properties of new biotin- and morpholine-functionalized ruthenium and osmium half-sandwich complexes

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Ruthenium (Ru) and osmium (Os) complexes are of sustained interest in cancer research and may be alternative to platinum-based therapy. We detail here three new series of ruthenium and osmium complexes, supported by physico-chemical characterizations, including time-dependent density functional theory, a combined experimental and computational study on the aquation reactions and the nature of the metal–arene bond. Cytotoxic profiles were then evaluated on several cancer cell lines although with limited success. Further investigations were, however, performed on the most active series using a genetic approach based on RNA interference and highlighted a potential multi-target mechanism of action through topoisomerase II, mitotic spindle, HDAC and DNMT inhibition.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

Crystal structures have been filed in the Cambridge Crystallographic Data Centre (CCDC). Deposit numbers: 2061654 for RuAEM and 2061655 for OsAEM.

References

  1. Rosenberg B, Van Camp L, Krigas T (1965) Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature 205:698–699. https://doi.org/10.1038/205698a0

    Article  CAS  PubMed  Google Scholar 

  2. Galluzzi L, Senovilla L, Vitale I et al (2012) Molecular mechanisms of cisplatin resistance. Oncogene 31:1869–1883. https://doi.org/10.1038/onc.2011.384

    Article  CAS  PubMed  Google Scholar 

  3. Florea A-M, Büsselberg D (2011) Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers (Basel) 3:1351–1371. https://doi.org/10.3390/cancers3011351

    Article  CAS  Google Scholar 

  4. Trondl R, Heffeter P, Kowol CR et al (2014) NKP-1339, the first ruthenium-based anticancer drug on the edge to clinical application. Chem Sci 5:2925–2932. https://doi.org/10.1039/c3sc53243g

    Article  CAS  Google Scholar 

  5. Leijen S, Burgers SA, Baas P et al (2015) Phase I/II study with ruthenium compound NAMI-A and gemcitabine in patients with non-small cell lung cancer after first line therapy. Invest New Drugs 33:201–214. https://doi.org/10.1007/s10637-014-0179-1

    Article  CAS  PubMed  Google Scholar 

  6. Meier-Menches SM, Gerner C, Berger W et al (2018) Structure–activity relationships for ruthenium and osmium anticancer agents—towards clinical development. Chem Soc Rev. https://doi.org/10.1039/C7CS00332C

    Article  PubMed  Google Scholar 

  7. Aird RE, Cummings J, Ritchie AA et al (2002) In vitro and in vivo activity and cross resistance profiles of novel ruthenium(II) organometallic arene complexes in human ovarian cancer. Br J Cancer 86:1652–1657. https://doi.org/10.1038/sj/bjc/6600290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Scolaro C, Bergamo A, Brescacin L et al (2005) In vitro and in vivo evaluation of ruthenium(II)–arene PTA complexes. J Med Chem 48:4161–4171. https://doi.org/10.1021/jm050015d

    Article  CAS  PubMed  Google Scholar 

  9. Peacock AFA, Habtemariam A, Ferna R et al (2006) Tuning the reactivity of osmium (II) and ruthenium (II) arene complexes under physiological conditions. J Am Chem Soc 128:1739–1748

    Article  CAS  Google Scholar 

  10. Zhang P, Sadler PJ (2017) Advances in the design of organometallic anticancer complexes. J Organomet Chem 839:5–14. https://doi.org/10.1016/j.jorganchem.2017.03.038

    Article  CAS  Google Scholar 

  11. Needham RJ, Sanchez-Cano C, Zhang X et al (2017) In-cell activation of organo-osmium(II) anticancer complexes. Angew Chemie Int Ed 56:1017–1020. https://doi.org/10.1002/anie.201610290

    Article  CAS  Google Scholar 

  12. Flocke LS, Trondl R, Jakupec MA, Keppler BK (2016) Molecular mode of action of NKP-1339—a clinically investigated ruthenium-based drug—involves ER- and ROS-related effects in colon carcinoma cell lines. Invest New Drugs 34:261–268. https://doi.org/10.1007/s10637-016-0337-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gifford JB, Huang W, Zeleniak AE et al (2016) Expression of GRP78, master regulator of the unfolded protein response, increases chemoresistance in pancreatic ductal adenocarcinoma. Mol Cancer Ther 15:1043–1052. https://doi.org/10.1158/1535-7163.MCT-15-0774

    Article  CAS  PubMed  Google Scholar 

  14. Neuditschko B, Legin AA, Baier D et al (2021) Interaction with ribosomal proteins accompanies stress induction of the anticancer metallodrug BOLD-100/KP1339 in the endoplasmic reticulum. Angew Chemie Int Ed 60:5063–5068. https://doi.org/10.1002/anie.202015962

    Article  CAS  Google Scholar 

  15. Meier SM, Kreutz D, Winter L et al (2017) An organoruthenium anticancer agent shows unexpected target selectivity for plectin. Angew Chemie Int Ed 56:1–6. https://doi.org/10.1002/anie.201702242

    Article  CAS  Google Scholar 

  16. Dong B, Song X, Kong X et al (2017) A tumor-targeting and lysosome-specific two-photon fluorescent probe for imaging pH changes in living cells. J Mater Chem B 5:988–995. https://doi.org/10.1039/c6tb02957d

    Article  CAS  PubMed  Google Scholar 

  17. Andrew CL, Klemm AR, Lloyd JB (1997) Lysosome membrane permeability to amines. Biochim Biophys Acta Biomembr 1330:71–82. https://doi.org/10.1016/S0005-2736(97)00145-4

    Article  CAS  Google Scholar 

  18. Fu Y, Habtemariam A, Pizarro AM et al (2010) Organometallic osmium arene complexes with potent cancer cell cytotoxicity. J Med Chem 53:8192–8196. https://doi.org/10.1021/jm100560f

    Article  CAS  PubMed  Google Scholar 

  19. Piao S, Amaravadi RK (2016) Targeting the lysosome in cancer. Ann N Y Acad Sci 1371:45–54. https://doi.org/10.1111/nyas.12953

    Article  PubMed  Google Scholar 

  20. Fehrenbacher N, Jäättelä M (2005) Lysosomes as targets for cancer therapy. Cancer Res 65:2993–2995. https://doi.org/10.1158/0008-5472.CAN-05-0476

    Article  CAS  PubMed  Google Scholar 

  21. Casini A, Gabbiani C, Sorrentino F et al (2008) Emerging protein targets for anticancer metallodrugs: inhibition of thioredoxin reductase and cathepsin B by antitumor ruthenium(II)-arene compounds. J Med Chem 51:6773–6781. https://doi.org/10.1021/jm8006678

    Article  CAS  PubMed  Google Scholar 

  22. Mokesch S, Schwarz D, Hejl M et al (2019) Fine-tuning the activation mode of an 1,3-Indandione-based ruthenium(II)-Cymene half-sandwich complex by variation of its leaving group. Molecules 24:1–15. https://doi.org/10.3390/molecules24132373

    Article  CAS  Google Scholar 

  23. Hao L, Zhong Y-M, Tan C-P, Mao Z-W (2021) Acidity-responsive phosphorescent metal complexes for cancer imaging and theranostic applications. J Organomet Chem. https://doi.org/10.1016/j.jorganchem.2021.121821

    Article  Google Scholar 

  24. Ren W, Han J, Uhm S et al (2015) Recent development of biotin conjugation in biological imaging, sensing, and target delivery. Chem Commun 51:10403–10418. https://doi.org/10.1039/C5CC03075G

    Article  CAS  Google Scholar 

  25. Muhammad N, Sadia N, Zhu C et al (2017) Biotin-tagged platinum(IV) complexes as targeted cytostatic agents against breast cancer cells. Chem Commun 53:9971–9974. https://doi.org/10.1039/c7cc05311h

    Article  CAS  Google Scholar 

  26. Jin S, Guo Y, Song D et al (2019) Targeting energy metabolism by a platinum(IV) prodrug as an alternative pathway for cancer suppression. Inorg Chem 58:6507–6516. https://doi.org/10.1021/acs.inorgchem.9b00708

    Article  CAS  PubMed  Google Scholar 

  27. Babak MV, Plażuk D, Meier SM et al (2015) Half-sandwich ruthenium(II) biotin conjugates as biological vectors to cancer cells. Chemistry 21:5110–5117. https://doi.org/10.1002/chem.201403974

    Article  CAS  PubMed  Google Scholar 

  28. Côrte-Real L, Karas B, Brás AR et al (2019) Ruthenium-cyclopentadienyl bipyridine-biotin based compounds: synthesis and biological effect. Inorg Chem 58:9135–9149. https://doi.org/10.1021/acs.inorgchem.9b00735

    Article  CAS  PubMed  Google Scholar 

  29. Teixeira RG, Belisario DC, Fontrodona X et al (2021) Unprecedented collateral sensitivity for cisplatin-resistant lung cancer cells presented by new ruthenium organometallic compounds. Inorg Chem Front. https://doi.org/10.1039/d0qi01344g

    Article  Google Scholar 

  30. Martin A. Bennett and Anthony K. Smith (1974) Arene ruthenium (II) complexes formed by dehydrogenation of Cyclo-. J Chem Soc Dalt Trans 0:233–241

  31. Stahl SWH (1990) A new family of (arene)osmium(0) and -osmium(II) complexes. Organometallics 9:1876–1881

    Article  CAS  Google Scholar 

  32. Peacock AFA, Habtemariam A, Moggach SA et al (2007) Chloro half-sandwich osmium (II) complexes: influence of chelated N, N-ligands on hydrolysis, guanine binding, and cytotoxicity. Inorg Chem 46:2966–2967. https://doi.org/10.1021/ic062350d

    Article  CAS  Google Scholar 

  33. Morris RE, Aird RE, Del Socorro MP et al (2001) Inhibition of cancer cell growth by ruthenium(II) arene complexes. J Med Chem 44:3616–3621. https://doi.org/10.1021/jm010051m

    Article  CAS  PubMed  Google Scholar 

  34. Higgins B, DeGraff BA, Demas JN (2005) Luminescent transition metal complexes as sensors: structural effects on pH response. Inorg Chem 44:6662–6669. https://doi.org/10.1021/ic050044e

    Article  CAS  PubMed  Google Scholar 

  35. Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620. https://doi.org/10.1039/b810189b

    Article  CAS  PubMed  Google Scholar 

  36. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy w. Phys Chem Chem Phys 7:3297–3305

    Article  CAS  Google Scholar 

  37. Weigend F (2006) Accurate Coulomb-fitting basis sets for H to Rn. Phys Chem Chem Phys 8:1057–1065. https://doi.org/10.1039/b515623h

    Article  CAS  PubMed  Google Scholar 

  38. Van LE, Baerends EJ, Snijders JG (1993) Relativistic regular two-component Hamiltonians. J Chem Phys 99:4597. https://doi.org/10.1063/1.466059

    Article  Google Scholar 

  39. Glendening ED, Badenhoop JK, Reed AE et al (2013) NBO 6.0. Theor Chem Institute, Univ Wisconsin, Madison

  40. Klose MHM, Hejl M, Heffeter P et al (2017) Post-digestion stabilization of osmium enables quantification by ICP-MS in cell culture and tissue. Analyst 142:2327–2332. https://doi.org/10.1039/c7an00350a

    Article  CAS  PubMed  Google Scholar 

  41. Berger G, Grauwet K, Zhang H et al (2018) Anticancer activity of osmium(VI) nitrido complexes in patient-derived glioblastoma initiating cells and in vivo mouse models. Cancer Lett 416:138–148. https://doi.org/10.1016/j.canlet.2017.11.041

    Article  CAS  PubMed  Google Scholar 

  42. Jiang H, Pritchard JR, Williams RT et al (2010) A mammalian functional-genetic approach to characterizing cancer therapeutics. Nat Chem Biol 7:1–9. https://doi.org/10.1038/nchembio.503

    Article  CAS  Google Scholar 

  43. Pritchard JR, Bruno PM, Hemann MT, Lauffenburger DA (2013) Predicting cancer drug mechanisms of action using molecular network signatures. Mol Biosyst 9:1604–1619. https://doi.org/10.1039/c2mb25459j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pritchard JR, Bruno PM, Gilberta LA et al (2013) Defining principles of combination drug mechanisms of action. PNAS. https://doi.org/10.1073/pnas.1210419110

    Article  PubMed  Google Scholar 

  45. Landázuri N, Le Doux JM (2006) Complexation with chondroitin sulfate C and polybrene rapidly purifies retrovirus from inhibitors of transduction and substantially enhances gene transfer. Biotechnol Bioeng 93:146–158. https://doi.org/10.1002/bit.20697

    Article  CAS  PubMed  Google Scholar 

  46. Bevernaegie R, Marcélis L, Laramée-Milette B et al (2018) Trifluoromethyl-substituted iridium(III) complexes: from photophysics to photooxidation of a biological target. Inorg Chem 57:1356–1367. https://doi.org/10.1021/acs.inorgchem.7b02778

    Article  CAS  PubMed  Google Scholar 

  47. Wang D, Lippard SJ (2005) Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov 4:307–320. https://doi.org/10.1038/nrd1691

    Article  CAS  PubMed  Google Scholar 

  48. Marloye M, Berger G, Gelbcke M, Dufrasne F (2016) A survey of the mechanisms of action of anticancer transition metal complexes. Future Med Chem. https://doi.org/10.4155/fmc-2016-0153

    Article  PubMed  Google Scholar 

  49. Betanzos-lara S, Novakova O, Deeth RJ et al (2012) Bipyrimidine ruthenium (II) arene complexes: structure, reactivity and cytotoxicity. J Biol Inorg Chem 17:1033–1051. https://doi.org/10.1007/s00775-012-0917-9

    Article  CAS  PubMed  Google Scholar 

  50. Wang F, Chen H, Parsons S et al (2003) Kinetics of aquation and anation of ruthenium(II) arene anticancer complexes, acidity and X-ray structures of aqua adducts. Chem A Eur J 9:5810–5820. https://doi.org/10.1002/chem.200304724

    Article  CAS  Google Scholar 

  51. Popp J, Hanf S, Hey-Hawkins E (2019) Facile arene ligand exchange in p-cymene ruthenium(II) complexes of tertiary P-chiral ferrocenyl phosphines. ACS Omega 4:22540–22548. https://doi.org/10.1021/acsomega.9b03251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sullivan MP, Nieuwoudt MK, Bowmaker GA et al (2018) Unexpected arene ligand exchange results in the oxidation of an organoruthenium anticancer agent: the first X-ray structure of a protein–Ru(carbene) adduct. Chem Commun. https://doi.org/10.1039/C8CC02433B

    Article  Google Scholar 

  53. Hubig SM, Lindeman SV, Kochi JK (2000) Charge-transfer bonding in metal-arene coordination. Coord Chem Rev 200–202:831–873. https://doi.org/10.1016/S0010-8545(00)00322-2

    Article  Google Scholar 

  54. Adeniyi AA, Ajibade PA (2013) Insights into the intramolecular properties of η 6-arene-Ru-based anticancer complexes using quantum calculations. J Chem. https://doi.org/10.1155/2013/892052

    Article  Google Scholar 

  55. Bruno PM, Liu Y, Park GY et al (2017) A subset of platinum-containing chemotherapeutic agents kills cells by inducing ribosome biogenesis stress. Nat Med 23:461–471. https://doi.org/10.1038/nm.4291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zheng YR, Suntharalingam K, Bruno PM et al (2016) Mechanistic studies of the anticancer activity of an octahedral hexanuclear Pt(II) cage. Inorganica Chim Acta 452:125–129. https://doi.org/10.1016/j.ica.2016.03.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Suntharalingam K, Johnstone TC, Bruno PM et al (2013) Bidentate ligands on osmium(VI) nitrido complexes control intracellular targeting and cell death pathways. J Am Chem Soc 135:14060–14063. https://doi.org/10.1021/ja4075375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bruno PM, Lu M, Dennis KA et al (2020) The primary mechanism of cytotoxicity of the chemotherapeutic agent CX-5461 is topoisomerase II poisoning. Proc Natl Acad Sci USA 117:4053–4060. https://doi.org/10.1073/pnas.1921649117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

M.M. thanks Sabrina Cauchies for the ICP-MS experiments.

Author information

Authors and Affiliations

Authors

Contributions

MM and GB conceived and designed the research program. JRP, HI and CJM participated the shRNA experiments. The manuscript was written by MM and GB with contributions from all the authors. MM prepared all figures.

Corresponding author

Correspondence to Gilles Berger.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 9743 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marloye, M., Inam, H., Moore, C.J. et al. Synthesis, structure and anticancer properties of new biotin- and morpholine-functionalized ruthenium and osmium half-sandwich complexes. J Biol Inorg Chem 26, 535–549 (2021). https://doi.org/10.1007/s00775-021-01873-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-021-01873-9

Keywords

Navigation