Skip to main content
Log in

Synthesis, spectral and extended spectrum beta-lactamase studies of transition metal tetraaza macrocyclic complexes

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Urinary tract infections commonly occur in humans due to microbial pathogens invading the urinary tract, which can bring about a range of clinical symptoms and potentially fatal sequelae. The present study is aimed at addressing the development of a new antimicrobial agent against extended spectrum beta lactamase (ESBL) producing E. coli bacteria. We have synthesised some biologically potent (NNNN) donor macrocycles (L 1  = dibenzo[f,n]dipyrido[3,4-b:4′,3′-j][1,4,9,12]tetraazacyclohexadecine-6,11,18,23(5H,12H, 7H, 24H)-tetraone, and L 2  = 6,12,19,25-tetraoxo-4,6,11,12,16,18,23,24-octahydrotetrabenzo [b,g,k,p][1,5,10,14]tetra azacyclooctadecine-2,13-dicarboxylic acid) and their Ti and Zr metal complexes in alcoholic media using microwave protocol. Macrocyclic ligands were synthesised by incorporating of 3,5-diaminobenzoic acid, phthalic acid and 3,4-diaminopyridine in 1:1:1 molar ratio. The macrocyclic ligands and their metal complexes have been characterised by elemental analysis, conductance measurement, magnetic measurement and their structure configurations have been determined by various spectroscopic (FTIR, 1H/13C NMR, UV–Vis, LC–MS mass, XRD and TGA) techniques. [ZrL2Cl2]Cl2 metal complex shows excellent antibacterial activity against ESBLs. A zone of inhibition and minimum inhibitory concentration was determined by McFarland and the dilution method, respectively. The spectral studies confirm the binding sites of the nitrogen atom of the macrocycles. An octahedral geometry has been assigned to the metal complexes based on the findings.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Khan MKR, Thukral SS, Gaind R (2008) Ind J Med Microbial 26(1):58–61

    Article  CAS  Google Scholar 

  2. Crowder MW, Spencer J, Vila AJ (2006) Acc Chem Res 39:721–728

    Article  CAS  PubMed  Google Scholar 

  3. McGeary RP, Schenk G, Guddat LW (2014) Eur J Med Chem 76:132–144

    Article  CAS  PubMed  Google Scholar 

  4. Livermore DM (2009) J Antimicrob Chemother 64:29–36

    Article  Google Scholar 

  5. Rawat D, Nair D (2010) J Glob Infect Dis 2(3):263–274

    Article  PubMed  PubMed Central  Google Scholar 

  6. Jain RK, Mishra AP (2016) J Saudi Chem Soc 20:127–137

    Article  CAS  Google Scholar 

  7. Jarlier V, Nicolas MH, Fournier G (1988) Rev Infect Dis 10:867–868

    Article  CAS  PubMed  Google Scholar 

  8. Thomson KS, Sanders CC (1992) Antimicrob Agents Chemother 36:1877–1882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vercauteren E, Descheemaeker P, Ieven M, Sanders CC, Goossens H (1997) J Clin Microbiol 35:2191–2197

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Cormican MG, Marshall SA, Jones RN (1996) J Clin Microbiol 34:1880–1884

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Sanders CC, Peyret M, Moland ES, Shubert C, Thomson KS, Boeufgras JM, Jr WE (2000) Sanders. J Clin Microbiol 38:570–574

    PubMed  PubMed Central  Google Scholar 

  12. Sanders CC, Barry AL, Washington JA, Shubert C, Moland ES, Traczewski MM, Knapp C, Mulder R (1996) J Clin Microbiol 34:2997–3001

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Livermore DM, Struelens M, Amorim J (2002) J Antimicrob Chemother 49:289–300

    Article  CAS  PubMed  Google Scholar 

  14. Motayo BO, Akinduti PA, Adeyakinu FA, Okerentugba PO, Nwanze JC, Onoh CC, Innocent-Adiele HC, Okonko IO (2013) Afr Health Sci. 13(4):1091–1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bush LM, Johnson CC (2000) Infect Dis Clin N Am 14:409–433

    Article  CAS  Google Scholar 

  16. Sensakovic JW, Smith LG (1995) Med Clin N Am 79:695–704

    Article  CAS  PubMed  Google Scholar 

  17. Ross JE, Mendes RE, Jone RN (2014) J Clin Microbiol 52(9):3399–3401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rupp EM, Fey PD (2003) Drugs 63(4):353–365

    Article  CAS  PubMed  Google Scholar 

  19. Klein T, Abgottspon D, Wittwer M, Rabbani S, Herold J, Jiang X, Kleeb S, Luthi C, Scharenberg M, Bezencon J, Gubler E, Pang L, Smiesko M, Cutting B, Schwardt O, Ernst B (2010) J Med Chem 53(24):8627–8641

    Article  CAS  PubMed  Google Scholar 

  20. Palmer N, Peakman TM, Norton D, Rees DC (2016) Org Biomol Chem 14:1599–1610

    Article  CAS  PubMed  Google Scholar 

  21. Thulasi G, Amsaveni V (2012) Int J Microbiol Res 3:24–29

    Google Scholar 

  22. Projan SJ, Bradford PA (2007) Curr Opin Microbiol 10:441–446

    Article  CAS  PubMed  Google Scholar 

  23. Falagas ME, Kasiakou SK (2006) Crit Care 10:R27

    Article  PubMed  PubMed Central  Google Scholar 

  24. Baysal A, Aydemir M, Durap F, Gumgum B, Ozkar S, Yildirim L (2007) Polyhedron 26:3373–3378

    Article  CAS  Google Scholar 

  25. Grivani G, Ghavami A, Kucerakova M, Dusek M, Khalaji AD (2014) J Mol Struct 1076:326–332

    Article  CAS  Google Scholar 

  26. Lewis SE (2015) Chem Soc Rev 44:2221–2304

    Article  CAS  PubMed  Google Scholar 

  27. Zhong GQ, Zhong Q (2014) Green Chem Lett Rev 7:236–242

    Article  Google Scholar 

  28. Hosny NM, Sherif YE (2015) Spectrochim Acta Mol Biomol Spectrosc 136:510–519

    Article  CAS  Google Scholar 

  29. Nordstrom JL, Gorlatov S, Zhang W, Yang Y, Huang L, Burke S, Ciccarone HV, Zhang T, Stavenhagen J, Koenig S, Stuwart SJ, Moore PA, Johnson S, Bonvin E (2011) Breast Cancer Res 13:1–14

    Article  Google Scholar 

  30. Meker S, Goshen KM, Weiss E, Magdassi S, Tshuva EY (2012) Angew Chem Int Ed Eng l51:10515–10517

  31. Cabeza NAI, Urena FH, Carretero MNM, Martos JMM, Exposito MJR (2008) J Inorg Biochem 102:647–655

    Article  Google Scholar 

  32. Carter MW, Oakton KJ, Warner M, Livermore DM (2000) J Clin Microbiol 38:4228–4232

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zali FHM, Chanawong A, Kerr KG, Birkenhead D, Hawkey PM (2000) J Antimicrob Chem 45:881–885

    Article  Google Scholar 

  34. Srivastava AK, Samant RA (1994) J Chem Eng Data 39:358–360

    Article  CAS  Google Scholar 

  35. Koing J, Kelling A, Schilde U, Strauch P (2016) Molbank 2016(M895):1–5

    Google Scholar 

  36. Jeffery GH, Bassett J, Mendham J, Denney RC (1989) Vogel’s textbook of quantitative chemical analysis, 5th edn. Longman Scientific & Technical, Harlow

    Google Scholar 

  37. Geary WJ (1971) Coord Chem Rev 7:81–122

    Article  CAS  Google Scholar 

  38. Kondo SR, Tsutsumi Y, Doi H, Nomura N, Hanawa T (2011) Acta Biomater 7:4259–4266

    Article  PubMed  Google Scholar 

  39. Cheng QR, Chen JZ, Zhou H, Pan ZQ (2011) J Coord Chem 64:1139–1152

    Article  CAS  Google Scholar 

  40. Blanco LH, Escamilla PA, Romero CM (2014) Phys Chem Liq 52:1–6

    Article  CAS  Google Scholar 

  41. Choi JH, Subham MA, Ng SW (2012) J Coord Chem 65:3481–3491

    Article  CAS  Google Scholar 

  42. Zhang XC, Xiang LC, Baiyun L, Jinju C, Zhang H, Hua Z, Yi F (2015) New J Chem 39:1968–1973

    Article  CAS  Google Scholar 

  43. Xiumei Y, Sylvie C, Bromfield TJ, Eden SP (2014) Int J Syst Evol Microbiol 64:3202–3207

    Article  Google Scholar 

  44. Tundidor-Camba A, Terraza CA, Tagle LH, Coll D, Ojedaa I, Pino M (2015) RSC Adv 5:23057–23066

    Article  CAS  Google Scholar 

  45. Xue H, Tan H, Wei D, Wei Y, Lin S, Liang F, Zhao B (2013) RSC Adv 3:5382–5385

    Article  CAS  Google Scholar 

  46. Chen J, Sun Y, Liu B, Liu D, Cheng J (2012) Chem Commun 48:449–451

    Article  CAS  Google Scholar 

  47. Wu H, Si Tang W, Zhou W, Stavila V, Rushab JJ, Udovic TJ (2015) Cryst Eng Comm 17:3533–3540

    Article  CAS  Google Scholar 

  48. Niaraki MJ, Kondejewski LH, Wheaton LC, Hodges RS (2009) J Med Chem 52(7):2090–2097

  49. Moradell S, Lorenzo J, Rovira A (2004) J Inorg Biochem 98(11):1933–1946

    Article  CAS  PubMed  Google Scholar 

  50. Nakamoto K (1986) Infrared and Raman spectra of inorganic and coordination compounds, 4th edn. Wiley, New York

  51. Delongeas JL, Burnel D, Netter P, Grignon M, Mur JM, Royer RJ, Girgnon G (1983) J Pharmacol 14(4):437–447

  52. Abgueguen P, Azoulay-Dupuis E, Noel V, Moine P, Rieux V, Fantin B, Bedos JP (2007) Antimicrob Agents Chemother 51:208–214

    Article  CAS  PubMed  Google Scholar 

  53. Gonewar NR, Jadhav VB, Jadhav KD, Sakure SS, Killedar AA, Sarawadekar RG (2012) IOSR J Pharm 2:25–33

    Google Scholar 

  54. Flanagan ME, Brickner SJ, Lall M, Casavant J, Deschenes L, Finegan SM, George DM, Granskog K, Hardink JR, Huband MD, Hoang T, Lamb L, Marra A, Mitton-Fry M, Mueller JP, Mullins LM, Noe MC, Donnell JPO, Pattavina D, Penzien JB, Schuff BP, Sun J, Whipple DA, Young J, Gootz TD (2011) ACS Med Chem Lett 2:385–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Santos AF, Brotto DF, Favarin LRV, Cabeza NA, Andrade GR, Batistote M, Cavalheiro AA, Neves A, Rodrigues DCM, Anjos AD (2014) Rev Bras Farmacogn 24:309–315

    Article  CAS  Google Scholar 

  56. Ciolan F, Patron L, Marutescu L, Chifiriuc MC (2015) Farmacia 63:86–92

    CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to Professor Aditya Shastri Vice-Chancellor of Banasthali University, Rajasthan, for kindly extending the facilities of “Banasthali Centre of Education” for research in basic sciences sanctioned under CURIE programme of the Department of Science and Technology, New Delhi, and Sandeep K. Shrivastava, Centre for Innovation, Research & Development (CIRD), Dr B. Lal Clinical Laboratory Pvt. Ltd. Jaipur, India, for helping us in biological analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinesh Kumar.

Electronic supplementary material

Below is the link to the electronic supplementary material. Electronic supplementary information (ESI): FTIR spectra of ligand L2 and its complex [ZrL2Cl2]Cl2, 1H NMR spectra of ligand L2 and complex [ZrL2Cl2]Cl2, 13C NMR spectra of ligand L2, and complex [ZrL2Cl2]Cl2, LC–MS mass spectra of ligand L2 and complex [ZrL2Cl2]Cl2, the molecular fragmentation patterns for ligand L2, TGA graph of complex [ZrL2Cl2]Cl2, UV–Vis spectra of ligand L2 and complex [ZrL2Cl2]Cl2, X-ray powder diffraction data of L2 and complex [Zr(L2)Cl2]Cl2, % Inhibition for the ligand L2 and its complex [ZrL2Cl2]Cl2, the growth curve of the complex with negative control, table of Physical properties, molar conductance (Λm), and elemental analysis data of the ligands and their metal complexes, table of IR spectral data (cm−1) of the ligands and their corresponding tetraaza macrocyclic complexes, and table of XRD data of complex of [Zr(L2)Cl2]Cl2

Supplementary material 1 (PDF 1211 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, D., Sharma, N. & Nair, M. Synthesis, spectral and extended spectrum beta-lactamase studies of transition metal tetraaza macrocyclic complexes. J Biol Inorg Chem 22, 535–543 (2017). https://doi.org/10.1007/s00775-017-1440-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-017-1440-9

Keywords

Navigation