Skip to main content

Advertisement

Log in

Associating a negatively charged GdDOTA-derivative to the Pittsburgh compound B for targeting Aβ amyloid aggregates

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

We have conjugated the tetraazacyclododecane-tetraacetate (DOTA) chelator to Pittsburgh compound B (PiB) forming negatively charged lanthanide complexes, Ln(L4), with targeting capabilities towards aggregated amyloid peptides. The amphiphilic Gd(L4) chelate undergoes micellar aggregation in aqueous solution, with a critical micellar concentration of 0.68 mM, lower than those for the neutral complexes of similar structure. A variable temperature 17O NMR and NMRD study allowed the assessment of the water exchange rate, k 298ex  = 9.7 × 106 s−1, about the double of GdDOTA, and for the description of the rotational dynamics for both the monomeric and the micellar forms of Gd(L4). With respect to the analogous neutral complexes, the negative charge induces a significant rigidity of the micelles formed, which is reflected by slower and more restricted local motion of the Gd3+ centers as evidenced by higher relaxivities at 20–60 MHz. Surface Plasmon Resonance results indicate that the charge does not affect significantly the binding strength to Aβ1–40 [K d = 194 ± 11 μM for La(L4)], but it does enhance the affinity constant to human serum albumin [K a = 6530 ± 68 M−1 for Gd(L4)], as compared to neutral counterparts. Protein-based NMR points to interaction of Gd(L4) with Aβ1–40 in the monomer state as well, in contrast to neutral complexes interacting only with the aggregated form. Circular dichroism spectroscopy monitored time- and temperature-dependent changes of the Aβ1–40 secondary structure, indicating that Gd(L4) stabilizes the random coil relative to the α-helix and β-sheet. TEM images confirm that the Gd(L4) complex reduces the formation of aggregated fibrils.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Fratiglioni L, Winblad B, von Strauss E (2007) Physiol Behav 92:98–104. doi:10.1016/j.physbeh.2007.05.059

    Article  CAS  PubMed  Google Scholar 

  2. Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM (2007) Alzheimers Dement 3:186–191. doi:10.1016/j.jalz.2007.04.381

    Article  PubMed  Google Scholar 

  3. Holtzman DM, Morris JC, Goate AM (2011) Sci Transl Med 3:77. doi:10.1126/scitranslmed.3002369

    Google Scholar 

  4. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Neurology 34:939–944

    Article  CAS  PubMed  Google Scholar 

  5. Dubois B, Feldman HH, Jacova C, Dekosky ST, Barberger-Gateau P, Cummings J, Delacourte A, Galasko D, Gauthier S, Jicha G, Meguro K, O’Brien J, Pasquier F, Robert P, Rossor M, Salloway S, Stern Y, Visser PJ, Scheltens P (2007) Lancet Neurol 6:734–746

    Article  PubMed  Google Scholar 

  6. Hardy J, Selkoe DJ (2002) Science 297:353–356. doi:10.1126/science.1072994

    Article  CAS  PubMed  Google Scholar 

  7. Rauk A (2009) Chem Soc Rev 38:2698. doi:10.1039/b807980n

    Article  CAS  PubMed  Google Scholar 

  8. Hardy JA, Higgins GA (1992) Science 256:184–185. doi:10.1126/science.1566067

    Article  CAS  PubMed  Google Scholar 

  9. Nordberg A, Rinne JO, Kadir A, Långström B (2010) Nat Rev Neurol 6:78–87. doi:10.1038/nrneurol.2009.217

    Article  CAS  PubMed  Google Scholar 

  10. Doody RS, Thomas RG, Farlow M et al (2014) N Engl J Med 370:311–321. doi:10.1056/NEJMoa1312889

    Article  CAS  PubMed  Google Scholar 

  11. Salloway S et al (2014) N Engl J Med 370:322–333. doi:10.1056/NEJMoa1304839

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Karran E, Hardy JA (2014) Ann Neurol 76:185–205. doi:10.1002/ana.24188

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Jaunmuktane Z et al (2015) Nature 525:247–250. doi:10.1038/nature15369

    Article  CAS  PubMed  Google Scholar 

  14. Mathis CA, Bacskai BJ, Kajdasz ST, McLellan ME, Frosch MP, Hyman BT, Holt DP, Wang Y, Huang G-F, Debnath ML, Klunk WE (2002) Bioorg Med Chem Lett 12:295–298. doi:10.1016/S0960-894X(01)00734-X

    Article  CAS  PubMed  Google Scholar 

  15. Vandenberghe R, Van Laere K, Ivanoiu A, Salmon E, Bastin C, Triau E, Hasselbalch S, Law I, Andersen A, Korner A, Minthon L, Garraux G, Nelissen N, Bormans G, Buckley C, Owenius R, Thurfjell L, Farrar G, Brooks DJ (2010) Ann Neurol 68:319–329. doi:10.1002/ana.22068

    Article  PubMed  Google Scholar 

  16. Camus V, Payoux P, Barré L, Desgranges B, Voisin T, Tauber C, La Joie L, Tafani M, Hommet C, Chételat G, Mondon K, de La Sayette V, Cottier JP, Beaufils E, Ribeiro MJ, Gissot V, Vierron E, Vercouillie J, Vellas B, Eustache F, Guilloteau (2012) Eur J Nucl Med Mol Imaging 39:621–631. doi:10.1007/s00259-011-2021-8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Barthel H, Gertz H-J, Dresel S, Peters O, Bartenstein P, Buerger K, Hiemeyer F, Wittemer-Rump SM, Seibyl J, Reininger C, Sabri O (2011) Lancet Neurol 10:424–435. doi:10.1016/S1474-4422(11)70077-1

    Article  CAS  PubMed  Google Scholar 

  18. Cai L, Innis RB, Pike VW (2007) Curr Med Chem 14:19–52. doi:10.2174/092986707779313471

    Article  CAS  PubMed  Google Scholar 

  19. Furumoto S, Okamura N, Iwata R, Yanai K, Arai H, Kudo Y (2007) Curr Top Med Chem 7:1773–1789

    Article  CAS  PubMed  Google Scholar 

  20. Xiong K-L, Yang Q-W, Gong S-G, Zhang W-G (2010) Nucl Med Commun 31:4–11. doi:10.1097/MNM.0b013e32833019f3

    Article  CAS  PubMed  Google Scholar 

  21. Clark CM, Schneider JA, Bedell BJ, Beach TG, Bilker WB, Mintun MA, Pontecorvo MJ, Hefti F, Carpenter AP, Flitter ML, Krautkramer MJ, Kung HF, Coleman RE, Doraiswamy PM, Fleisher AS, Sabbagh MN, Sadowsky CH, Reiman EM, Zehntner SP, Skovronsky DM (2011) J Am Med Assoc 305:275–283. doi:10.1001/jama.2010.2008

    Article  CAS  Google Scholar 

  22. Mathis CA, Wang Y, Holt DP, Huang GF, Debnath ML, Klunk WE (2003) J Med Chem 46:2740–2754. doi:10.1021/jm030026b

    Article  CAS  PubMed  Google Scholar 

  23. Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, Bergström M, Savitcheva I, Huang GF, Estrada S, Ausen B, Debnath ML, Barletta J, Price JC, Sandell J, Lopresti BJ, Wall A, Koivisto P, Antoni G, Mathis CA, Långström B (2004) Ann Neurol 55:306–319. doi:10.1002/ana.20009

    Article  CAS  PubMed  Google Scholar 

  24. Landau SM, Breault C, Joshi AD, Pontecorvo M, Mathis CA, Jagust WJ, Mintun MA (2013) J Nucl Med 54:70–77. doi:10.2967/jnumed.112.109009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Klunk WE, Mathis CA (2008) Curr Opin Neurol 21:683–687. doi:10.1097/WCO.0b013e3283168e1a

    Article  PubMed Central  PubMed  Google Scholar 

  26. Zhuang Z-P, Kung M-P, Hou C, Ploessl K, Kung HF (2005) Nucl Med Biol 32:171–184

    Article  CAS  PubMed  Google Scholar 

  27. Serdons K, Verduyckt T, Cleynhens J, Terwinghe C, Mortelmans L, Bormans G, Verbruggen A (2007) Bioorg Med Chem Lett 17:6086–6090. doi:10.1016/j.bmcl.2007.09.055

    Article  CAS  PubMed  Google Scholar 

  28. Cui M-C, Li Z-J, Tang R-K, Liu R-K (2010) Bioorg Med Chem 18:2777–2784. doi:10.1016/j.bmc.2010.02.002

    Article  CAS  PubMed  Google Scholar 

  29. Ono M, Ikeoka R, Watanabe RH, Kimura H, Fuchigami T, Haratake M, Saji H, Nakayama M (2010) ACS Chem Neurosci 1:598–607. doi:10.1021/cn100042d

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Ono M, Ikeoka R, Watanabe RH, Kimura H, Fuchigami T, Haratake M, Saji H, Nakayama M (2010) Bioorg Med Chem Lett 20:5743–5748. doi:10.1016/j.bmcl.2010.08.004

    Article  CAS  PubMed  Google Scholar 

  31. Cheng Y, Ono M, Kimura H, Ueda M, Saji H (2012) J Med Chem 55:2279–2286. doi:10.1021/jm201513c

    Article  CAS  PubMed  Google Scholar 

  32. Hickey JL, Donnelly PS (2012) Coord Chem Rev 256:2367–2380. doi:10.1016/j.ccr.2012.03.035

    Article  CAS  Google Scholar 

  33. Hayne DJ, Lim S, Donnelly PS (2014) Chem Soc Rev 43:6701–6715. doi:10.1039/c4cs00026a

    Article  CAS  PubMed  Google Scholar 

  34. Merbach AE, Helm L, Toth E (2013) The chemistry of contrast agents in medical magnetic resonance imaging, 2nd edn. Wiley

  35. Caravan P, Ellison JJ, McMurry TJ, Lauffer RB (1999) Chem Rev 99:2293–2352. doi:10.1021/cr980440x

    Article  CAS  PubMed  Google Scholar 

  36. Jack CR Jr, Garwood M, Wengenack TM, Borowski B, Curran GL, Lin J, Adriany G, Gröhn OHJ, Grimm R, Poduslo JF (2004) Magn Reson Med 52:1263–1271. doi:10.1002/mrm.20266

    Article  PubMed Central  PubMed  Google Scholar 

  37. Higuchi M, Iwata N, Matsuba Y, Sato K, Sasamoto K, Saido TC (2005) Nat Neurosci 8:527–533. doi:10.1038/nn1422

    Article  CAS  PubMed  Google Scholar 

  38. Poduslo JF, Wengenack TM, Curran GL, Wisniewski T, Sigurdsson EM, Macura SI, Borowski BJ, Jack CR (2002) Neurobiol Dis 11:315–329. doi:10.1006/nbdi.2002.0550

    Article  CAS  PubMed  Google Scholar 

  39. Wadghiri YZ, Sigurdsson EM, Sadowski M, Elliott JI, Li Y, Scholtzova H, Tang CY, Aguinaldo G, Pappolla M, Duff K, Wisniewski T, Turnbull DH (2003) Magn Reson Med 50:293–302. doi:10.1002/mrm.10529

    Article  CAS  PubMed  Google Scholar 

  40. Poduslo JF, Curran GL, Peterson JA, McCormick DJ, Fauq AH, Khan MA, Wengenack TM (2004) Biochemistry 43:6064–6075. doi:10.1021/bi0359574

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Yang J, Wadghiri YZ, Hoang DM, Tsui W, Sun Y, Chung E, Li Y, Wang A, de Leon M, Wisniewski T (2011) Neuroimage 55:1600–1609. doi:10.1016/j.neuroimage.2011.01.023

    Article  PubMed Central  PubMed  Google Scholar 

  42. Sigurdsson EM, Wadghiri YZ, Mosconi L, Blind JA, Knudsen E, Asuni A, Scholtzova H, Tsui WH, Li Y, Sadowski M, Turnbull DH, de Leon MJ, Wisniewski T (2008) Neurobiol Aging 29:836–847. doi:10.1016/j.neurobiolaging.2006.12.018

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Wadghiri YZ, Li J, Wang J, Hoang DM, Sun Y, Xu H, Tsui W, Li Y, Boutajangout A, Wang A, de Leon MJ, Wisniewski T (2013) PLoS One 8:e57097. doi:10.1371/journal.pone.0057097

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Larbanoix L, Burtea C, Laurent S, Van Leuven F, Toubeau G, Elst LV, Muller RN (2010) Neurobiol Aging 31:1679–1689. doi:10.1016/j.neurobiolaging.200809.021

    Article  CAS  PubMed  Google Scholar 

  45. Petiet A, Satin M, Bertrand A, Wiggins CW, Petit F, Houitte D, Hantraye P, Benavides J, Debeir T, Rooney T, Dhenain M (2011) Neurobiol Aging 33:1533–1544. doi:10.1016/j.neurobiolaging.2011.03.009

    Article  PubMed  Google Scholar 

  46. Martins AF, Morfin J-F, Kubíčková A, Kubíček V, Buron F, Suzenet F, Salerno M, Lazar AN, Duyckaerts C, Arlicot N, Guilloteau D, Geraldes CFGC, Tóth É (2013) ACS Med Chem Lett 5:436–440. doi:10.1021/ml400042w

    Article  Google Scholar 

  47. Martins AF, Morfin J-F, Geraldes CFGC, Tóth É (2014) J Biol Inorg Chem 19:281–295. doi:10.1007/s00775-013-1055-8

    Article  CAS  PubMed  Google Scholar 

  48. Martins AF, Dias DM, Morfin J-F, Lacerda S, Laurents DV, Tóth É, Geraldes CFGC (2015) Chem Eur J 21:5413–5422. doi:10.1002/chem.201406152

    Article  CAS  PubMed  Google Scholar 

  49. Vithanarachchi SM, Allen MJ (2013) Chem Commun 49:4148–4150. doi:10.1039/C2CC36583A

    Article  CAS  Google Scholar 

  50. Bort G, Catoen S, Borderies H, Kebsi A, Ballet S, Louin G, Port M, Ferroud C (2014) Eur J Med Chem 87:843–861. doi:10.1016/j.ejmech.2014.10.016

    Article  CAS  PubMed  Google Scholar 

  51. Petiet A, Dhenain M (2011) Curr Med Imaging Rev 7:1–8

    Article  Google Scholar 

  52. Barge A, Cravotto G, Gianolio E, Fedeli F (2006) Contrast Media Mol Imaging 1:184–188. doi:10.1002/cmmi.110

    Article  PubMed  Google Scholar 

  53. Raiford DS, Fisk CL, Becker ED (1979) Anal Chem 51:2050–2051

    Article  CAS  Google Scholar 

  54. Burton DR, Forsen S, Karlstrom G, Dwek R (1979) Progr Nucl Magn Reson Spectrosc 13:1–45. doi:10.1016/0079-6565(79)80012-6

    Article  CAS  Google Scholar 

  55. Aime S, Fasano M, Terreno E, Botta M (2001) Protein-bound metal chelates in “The chemistry of contrast agents in medical magnetic resonance imaging”. Toth E, Merbach AE eds. Wiley & Sons

  56. Shuvaev VV, Siest G (1996) FEBS Lett 383:9–12

    Article  CAS  PubMed  Google Scholar 

  57. Myszka DG, Wood SJ, Biere AL (1999) Methods Enzymol 309:386–402

    Article  CAS  PubMed  Google Scholar 

  58. Schleucher J, Schwendinger M, Sattler M, Schmidt P, Schedletzky O, Glaser SJ, Sorensen OW, Griesinger C (1994) J Biomol NMR 4:301–306

    Article  CAS  PubMed  Google Scholar 

  59. Liu M, Mao X, Ye C, Huang H, Nicholson JK, Lindon JC (1998) J Magn Reson 132:125–129

    Article  CAS  Google Scholar 

  60. Laurents DV, Gorman PM, Guo M, Rico M, Chakrabartty A, Bruix M (2005) J Biol Chem 280:3675–3685. doi:10.1074/jbc.M409507200

    Article  CAS  PubMed  Google Scholar 

  61. Markley JL, Bax A, Arata Y, Hilbers CW, Kaptein R, Sykes BD, Wright PE, Wüthrich K (1998) Eur J Biochem 256:1–15. doi:10.1046/j.1432-1327.1998.2560001.x

    Article  CAS  PubMed  Google Scholar 

  62. Bernhard C, Moreau M, Lhenry D, Goze C, Boschetti F, Rousselin Y, Brunotte F, Denat F (2012) Chem Eur J 18:7834–7841. doi:10.1002/chem.201200132

    Article  CAS  PubMed  Google Scholar 

  63. Nicolle GM, Toth E, Eisenwiener K-P, Mäcke HR, Merbach AE (2002) J Biol Inorg Chem 7:757–769. doi:10.1007/s00775-002-0353-3

    Article  CAS  PubMed  Google Scholar 

  64. Tóth É, Helm L, Kellar K, Merbach AE (1999) Chem Eur J 5:1202–1211. doi:10.1002/(SICI)1521-3765

    Article  Google Scholar 

  65. Woods M, Aime S, Botta M, Howard JAK, Moloney JM, Navet M, Parker D, Port M, Rousseaux O (2000) J Am Chem Soc 122:9781–9792. doi:10.1021/ja994492v

    Article  CAS  Google Scholar 

  66. Aime S, Barge A, Bruce JI, Botta M, Howard JAK, Moloney JM, Parker D, de Sousa AS, Woods M (1999) J Am Chem Soc 121:5762–5771. doi:10.1021/ja990225d

    Article  CAS  Google Scholar 

  67. Dunand FA, Aime S, Merbach AE (2000) J Am Chem Soc 122:1506–1512. doi:10.1021/ja993204s

    Article  CAS  Google Scholar 

  68. Aime S, Barge A, Botta M, De Sousa AS, Parker D (1998) Angew Chem Int Ed 37:2673–2675. doi:10.1002/(SICI)1521-3773(19981016)37:19<2673:AID-ANIE2673>3.0.CO;2-#

  69. Aime S, Botta M, Garda Z, Kucera BE, Tircso G, Young VG, Woods M (2011) Inorg Chem 50:7955–7965 and references therein. doi:10.1021/ic2012827

  70. Ruloff R, Tóth É, Scopelliti R, Tripier R, Handle H, Merbach AE (2002) Chem Commun 22:2630–2631. doi:10.1039/B207713B

    Article  Google Scholar 

  71. Jászberényi Z, Moriggi L, Schmidt P, Weidensteiner C, Kneuer R, Merbach AE, Helm L, Tóth É (2007) J Biol Inorg Chem 12:406–420. doi:10.1007/s00775-006-0197-3

    Article  PubMed  Google Scholar 

  72. Mensch J, Oyarzabal J, Mackie C, Augustijns P (2009) J Pharm Sci 98:4429–4468. doi:10.1002/jps.21745

    Article  CAS  PubMed  Google Scholar 

  73. Caravan P, Cloutier NJ, Greenfield MT, McDermid SA, Dunham SU, Bulte JWM, Amedio JC Jr, Looby RJ, Supkowski RM, Horrocks WD Jr, McMurry TJ, Lauffer RB (2002) J Am Chem Soc 124:3152–3162. doi:10.1021/ja017168k

    Article  CAS  PubMed  Google Scholar 

  74. Moriggi L, Yaseen MA, Helm L, Caravan P (2012) Chem Weinh Bergstr Ger 18:3675–3686. doi:10.1002/chem.201103344

    CAS  Google Scholar 

  75. Giardiello M, Botta M, Lowe MP (2011) J Incl Phenom Macrocycl Chem 71:435–444. doi:10.1007/s10847-011-0009-4

    Article  CAS  Google Scholar 

  76. Ramakrishnan M, Kandimalla KK, Wengenack TM, Howell KG, Poduslo JF (2009) Biochemistry 48:10405–10415. doi:10.1021/bi900523q

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. LeVine H (1993) Protein Sci 2:404–410. doi:10.1002/pro.5560020312

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Lendel C, Bolognesi B, Wahlström A, Dobson CM, Gräslund A (2010) Biochemistry 49:1358–1360. doi:10.1021/bi902005t

    Article  CAS  PubMed  Google Scholar 

  79. Abelein A, Bolognesi B, Dobson CM, Gräslund A, Lendel C (2012) Biochemistry 51:126–137. doi:10.1021/bi201745g

    Article  CAS  PubMed  Google Scholar 

  80. Hoyer W, Grönwall C, Jonsson A, Ståhl S, Härd T (2008) Proc Natl Acad Sci 105:5099–5104. doi:10.1073/pnas.0711731105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Wahlström A, Hugonin L, Perálvarez-Marín A, Jarvet J, Gräslund A (2008) FEBS J 275:5117–5128. doi:10.1111/j.1742-4658.2008.06643.x

    Article  PubMed  Google Scholar 

  82. Bai Y, Milne JS, Mayne L, Englander SW (1993) Proteins 17:75–86

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Hou L, Shao H, Zhang Y, Li H, Menon NK, Neuhaus EB, Brewer JM, Byeon I-JL, Ray DG, Vitek MP, Iwashita T, Makula RA, Przybyla AB, Zagorski MG (2004) J Am Chem Soc 126:1992–2005. doi:10.1021/ja036813f

    Article  CAS  PubMed  Google Scholar 

  84. Danielsson J, Andersson A, Jarvet J, Gräslund A (2006) Magn Reson Chem 44:S114–S121. doi:10.1002/mrc.1814

    Article  CAS  PubMed  Google Scholar 

  85. Chang ES-H, Liao T-Y, Lim T-S, Fann W, Chen RP-Y (2009) J Mol Biol 385:1257–1265. doi:10.1016/j.jmb.2008.11.009

  86. Jarvet J, Damberg P, Danielsson J, Johansson I, Eriksson LEG, Gräslund A (2003) FEBS Lett 555:371–374. doi:10.1016/S0014-5793(03)01293-6

    Article  CAS  PubMed  Google Scholar 

  87. Greenfield NJ (1996) Anal Biochem 235:1–10

    Article  CAS  PubMed  Google Scholar 

  88. Greenfield NJ (2007) Nat Protoc 1:2876–2890. doi:10.1038/nprot.2006.202

    Article  Google Scholar 

  89. Kelly MA, Chellgren BW, Rucker AL, Troutman JM, Fried MG, Miller A-F, Creamer TP (2001) Biochemistry 40:14376–14383. doi:10.1021/bi011043a

    Article  CAS  PubMed  Google Scholar 

  90. Danielsson J, Jarvet J, Damberg P, Gräslund A (2005) FEBS J 272:3938–3949. doi:10.1111/j.1742-4658.2005.04812.x

    Article  CAS  PubMed  Google Scholar 

  91. Kochi A, Lee HJ, Vithanarachchi SM, Padmini V, Allen MJ, Lim MH (2015) Curr Alzheimer Res 12:415–423

    Article  CAS  PubMed  Google Scholar 

  92. Grüning CSR, Klinker S, Wolff M, Schneider M, Toksök K, Klein AN, Nagel-Steger L, Willbold D, Hoyer W (2013) J Biol Chem 288:37104-3711. doi:10.1074/jbc.M113.513432

    Article  Google Scholar 

  93. Narayan P, Orte A, Clarke RW, Bolognesi B, Hook S, Ganzinger KA, Meehan S, Wilson MR, Dobson CM, Klenerman D (2012) Nature Struct Mol Biol 19:79–83. doi:10.1038/nsmb.2191

    Article  CAS  Google Scholar 

  94. Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, Derecki NC, Castle D, Mandell JW, Lee KS, Harris TH, Kipnis J (2015) Nature 523:337–343. doi:10.1038/nature14432

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Erickson MA, Banks WA (2013) J Cereb Blood Flow Metab 33:1500–1513. doi:10.1038/jcbfm.2013.135

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Bell RD, Winkler EA, Singh I, Sagare AP, Deane R, Wu Z, Holtzman DM, Betsholtz C, Armulik A, Sallstrom J, Berk BC, Zlokovic BV (2012) Nature 485:512–516. doi:10.1038/nature11087

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Montagne A, Barnes SR, Sweeney MD, Halliday MR, Sagare AP, Zhao Z, Toga AW, Jacobs RE, Liu CY, Amezcua L, Harrington MG, Chui HC, Law M, Zlokovic BV (2015) Neuron 85:296–302. doi:10.1016/j.neuron.2014.12.032

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Xia W, Yang T, Smith IM, Shen Y, Walsh DM, Selkoe DJ (2009) Arch Neurol 66:190–199. doi:10.1001/archneurol.2008.565

    Article  PubMed Central  PubMed  Google Scholar 

  99. Villemagne VL, Perez VA, Pike KE, Kok WM, Rowe CC, White AR, Bourgeat P, Salvado O, Bedo J, Hutton CA, Faux NJ, Masters CL, Barnham KJ (2010) J Neurosci 30:6315–6322. doi:10.1523/JNEUROSCI.5180-09.2010

    Article  CAS  PubMed  Google Scholar 

  100. Powell DH, Ni Dhubhghaill OM, Pubanz D, Helm L, Lebedev YS, Schlaepfer W, Merbach AE (1996) J Am Chem Soc 118:9333–9346. doi:10.1021/ja961743g

    Article  CAS  Google Scholar 

  101. Henrotte V, Vander Elst L, Laurent S, Muller RN (2007) J Biol Inorg Chem 12:929–937. doi:10.1007/s00775-007-0247-5

    Article  CAS  PubMed  Google Scholar 

  102. Silverio S, Torres S, Martins AF, Martins JA, Andre JP, Helm L, Prata MIM, Santos AC, Geraldes CFGC (2009) Dalton Trans 4656–4670. doi:10.1039/B823402G

Download references

Acknowledgments

This work was supported by the Portuguese Fundação para a Ciência e Tecnologia (FCT; grants SFRH/BD/46370/2008 to A. F. M., REEQ/481/QUI/2006, RECI/QEQ-QFI/0168/2012 and CENTRO-07-CT62-FEDER-002012), by the Coimbra Chemistry Centre (project PEst-OE/QUI/UI0313/2014), the Rede Nacional de RMN (REDE/1517/RMN/2005), in part by FEDER—European Regional Development Fund through the COMPETE Program (Operational Program for Competitiveness) and by the French-Portuguese PHC PESSOA project. E. T. acknowledges support from La Ligue contre le Cancer and D. V. L. the support of the Spanish Ministry of Science and Innovation grants CTQ 2010-21567-C02-02 and SAF2013-49179-C2-2-R. This work was carried out in the frame of the European COST Actions TD1004 “Theragnostics Imaging and Therapy” and TD1007 “PET-MRI”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos F. G. C. Geraldes.

Additional information

Dedicated to the memory of Professor Robert J. P. Williams.

Electronic supplementary material

Below is the link to the electronic supplementary material.

775_2015_1316_MOESM1_ESM.pdf

Supplementary material 1 (PDF 5803 kb) 1H Aβ1-40 line width changes in the presence of Gd(L4) (Figure S1), far-UV CD spectra of 40 μM Aβ1-40 in 10 mM sodium phosphate buffer, pH 7.3 as a function of time (Figure S2), equations for the analysis of 1H NMRD and 17O NMR data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins, A.F., Oliveira, A.C., Morfin, JF. et al. Associating a negatively charged GdDOTA-derivative to the Pittsburgh compound B for targeting Aβ amyloid aggregates. J Biol Inorg Chem 21, 83–99 (2016). https://doi.org/10.1007/s00775-015-1316-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-015-1316-9

Keywords

Navigation