Skip to main content
Log in

Oxidized and reduced [2Fe–2S] clusters from an iron(I) synthon

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Synthetic [2Fe–2S] clusters are often used to elucidate ligand effects on the reduction potentials and spectroscopy of natural electron-transfer sites, which can have anionic Cys ligands or neutral His ligands. Current synthetic routes to [2Fe–2S] clusters are limited in their feasibility with a range of supporting ligands. Here, we report a new synthetic route to synthetic [2Fe–2S] clusters, through oxidation of an iron(I) source with elemental sulfur. This method yields a neutral diketiminate-supported [2Fe–2S] cluster in the diiron(III)-oxidized form. The oxidized [2Fe–2S] cluster can be reduced to a mixed valent iron(II)–iron(III) compound. Both the diferric and reduced mixed valent clusters are characterized using X-ray crystallography, Mössbauer spectroscopy, EPR spectroscopy and cyclic voltammetry. The reduced compound is particularly interesting because its X-ray crystal structure shows a difference in Fe–S bond lengths to one of the iron atoms, consistent with valence localization. The valence localization is also evident from Mössbauer spectroscopy.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Beinert H, Holm RH, Münck E (1997) Science 277:653–659

    Article  CAS  PubMed  Google Scholar 

  2. Beinert H (2000) J Biol Inorg Chem 5:2–15

    Article  CAS  PubMed  Google Scholar 

  3. Fontecave M (2006) Nat Chem Biol 2:171–174

    Article  CAS  PubMed  Google Scholar 

  4. Crack JC, Green J, Thomson AJ, Le Brun NE (2012) Curr Opin Chem Biol 16:35–44

    Article  CAS  PubMed  Google Scholar 

  5. Lill R (2009) Nature 460:831–838

    Article  CAS  PubMed  Google Scholar 

  6. Kennepohl P, Solomon EI (2003) Inorg Chem 42:696–708

    Article  CAS  PubMed  Google Scholar 

  7. Sigfridsson E, Olsson MHM, Ryde U (2001) Inorg Chem 40:2509–2519

    Article  CAS  PubMed  Google Scholar 

  8. Venkateswara Rao P, Holm RH (2004) Chem Rev 104:527–560

  9. Ferraro DJ, Gakhar L, Ramaswamy S (2005) Biochem Biophys Res Comm 338:175–190

    Article  CAS  PubMed  Google Scholar 

  10. Wiley SE, Paddock ML, Abresch EC, Gross L, van der Geer P, Nechushtai R, Murphy AN, Jennings PA, Dixon JE (2007) J Biol Chem 282:23745–23749

    Article  CAS  PubMed  Google Scholar 

  11. Bak DW, Elliott SJ (2014) Curr Opin Chem Biol 19:50–58

    Article  CAS  PubMed  Google Scholar 

  12. Zuris JA, Halim DA, Conlan AR, Abresch EC, Nechushtai R, Paddock ML, Jennings PA (2010) J Am Chem Soc 132:13120–13122

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Kimura S, Kikuchi A, Senda T, Shiro Y, Fukuda M (2005) Biochem J 388:869–878

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Holden HM, Jacobson BL, Hurley JK, Tollin G, Oh BH, Skjeldal L, Chae YK, Cheng H, Xia B, Markley JL (1994) J Bioenerg Biomembr 26:67–88

    Article  CAS  PubMed  Google Scholar 

  15. Liu J, Chakraborty S, Hosseinzadeh P, Yu Y, Tian S, Petrik I, Bhagi A, Lu Y (2014) Chem Rev 114:4366–4469

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Ballmann J, Albers A, Demeshko S, Dechert S, Bill E, Bothe E, Ryde U, Meyer F (2008) Angew Chem Int Ed 47:9537–9541

    Article  CAS  Google Scholar 

  17. Albers A, Demeshko S, Dechert S, Bill E, Bothe E, Meyer F (2011) Angew Chem Int Ed 50:9191–9194

    Article  CAS  Google Scholar 

  18. Fuchs MGG, Dechert S, Demeshko S, Meyer F (2010) Eur J Inorg Chem 2010:3247–3251

    Article  Google Scholar 

  19. Ballmann J, Dechert S, Demeshko S, Meyer F (2009) Eur J Inorg Chem 2009:3219–3225

    Article  Google Scholar 

  20. Ballmann J, Sun X, Dechert S, Schneider B, Meyer F (2009) Dalton 25:4908–4917

    Article  Google Scholar 

  21. Beardwood P, Gibson JF (1985) J Chem Soc Chem Commun 1345–1347

  22. Do Y, Simhon ED, Holm RH (1983) Inorg Chem 22:3809–3812

    Article  CAS  Google Scholar 

  23. Hagen KS, Watson AD, Holm RH (1983) J Am Chem Soc 105:3905–3913

    Article  CAS  Google Scholar 

  24. Saouma CT, Kaminsky W, Mayer JM (2012) J Am Chem Soc 134:7293–7296

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Albers A, Bayer T, Demeshko S, Dechert S, Meyer F (2013) Chem Eur J 19:10101–10106

    Article  CAS  PubMed  Google Scholar 

  26. Ding XQ, Bill E, Trautwein AX, Winkler H, Kostikas A, Papaefthymiou V, Simopoulos A, Beardwood P, Gibson JF (1993) J Chem Phys 99:6421–6428

    Article  CAS  Google Scholar 

  27. Albers A, Demeshko S, Dechert S, Saouma CT, Mayer JM, Meyer F (2014) J Am Chem Soc 136:3946–3954

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Ohki Y, Sunada Y, Tatsumi K (2005) Chem Lett 34:172–173

    Article  CAS  Google Scholar 

  29. Holland PL (2008) Acc Chem Res 41:905–914

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Vela J, Stoian S, Flaschenriem CJ, Münck E, Holland PL (2004) J Am Chem Soc 126:4522–4523

    Article  CAS  PubMed  Google Scholar 

  31. Rodriguez MM, Stubbert BD, Scarborough CC, Brennessel WW, Bill E, Holland PL (2012) Angew Chem Int Ed 51:8247–8250

    Article  CAS  Google Scholar 

  32. Fohlmeister L, Vignesh KR, Winter F, Moubaraki B, Rajaraman G, Pottgen R, Murray KS, Jones C (2015) Dalton Trans 44:1700–1708

    Article  CAS  PubMed  Google Scholar 

  33. Grubel K, Brennessel WW, Mercado BQ, Holland PL (2014) J Am Chem Soc 136:16807–16816

    Article  CAS  PubMed  Google Scholar 

  34. Rodriguez MM, Bill E, Brennessel WW, Holland PL (2011) Science 334:780–783

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. MacLeod KC, Vinyard DJ, Holland PL (2014) J Am Chem Soc 136:10226–10229

    Article  CAS  PubMed  Google Scholar 

  36. Hoggins JT, Steinfink H (1976) Inorg Chem 15:1682–1685

    Article  CAS  Google Scholar 

  37. Iwata S, Saynovits M, Link TA, Michel H (1996) Structure 4:567–579

    Article  CAS  PubMed  Google Scholar 

  38. Fukuyama K (2004) Photosynth Res 81:289–301

    Article  CAS  PubMed  Google Scholar 

  39. Fee JA, Findling KL, Yoshida T, Hille R, Tarr GE, Hearshen DO, Dunham WR, Day EP, Kent TA, Münck E (1984) J Biol Chem 259:124–133

    CAS  PubMed  Google Scholar 

  40. Meyer J, Clay MD, Johnson MK, Stubna A, Münck E, Higgins C, Wittung-Stafshede P (2002) Biochemistry 41:3096–3108

    Article  CAS  PubMed  Google Scholar 

  41. Day P, Hush NS, Clark RJH (2008) Phill Trans R Soc A 366:5–14

    Article  CAS  Google Scholar 

  42. Beschoten B, Crowell PA, Malajovich I, Awschalom DD, Matsukura F, Shen A, Ohno H (1999) Phys Rev Lett 83:3073–3076

    Article  CAS  Google Scholar 

  43. de Oliveira Tiago (2004) F, Bominaar EL, Hirst J, Fee JA, Münck E. J Am Chem Soc 126:5338–5339

    Article  Google Scholar 

  44. Fritz J, Anderson R, Fee J, Palmer G, Sands RH, Tsibris JC, Gunsalus IC, Orme-Johnson WH, Beinert H (1971) Biochim Biophys Acta 253:110–133

    Article  CAS  PubMed  Google Scholar 

  45. Crouse BR, Meyer J, Johnson MK (1995) J Am Chem Soc 117:9612–9613

    Article  CAS  Google Scholar 

  46. Achim C, Bominaar EL, Meyer J, Peterson J, Münck E (1999) J Am Chem Soc 121:3704–3714

    Article  CAS  Google Scholar 

  47. Gamelin DR, Bominaar EL, Kirk ML, Wieghardt K, Solomon EI (1996) J Am Chem Soc 118:8085–8097

    Article  CAS  Google Scholar 

  48. Colbert CL, Couture MM, Eltis LD, Bolin JT (2000) Structure 8:1267–1278

    Article  CAS  PubMed  Google Scholar 

  49. Dey A, Jenney FE Jr, Adams MW, Babini E, Takahashi Y, Fukuyama K, Hodgson OK, Hedman B, Solomon EI (2007) Science 318:1464–1468

    Article  CAS  PubMed  Google Scholar 

  50. Im S-C, Lam K-Y, Lim M-C, Ooi B-L, Sykes AG (1995) J Am Chem Soc 117:3635–3636

    Article  CAS  Google Scholar 

  51. Yoo SJ, Meyer J, Münck E (1999) J Am Chem Soc 121:10450–10451

    Article  CAS  Google Scholar 

  52. Verhagen MFJM, Link TA, Hagen WR (1995) FEBS Lett 361:75–78

    Article  CAS  PubMed  Google Scholar 

  53. Leggate EJ, Bill E, Essigke T, Ullmann GM, Hirst J (2004) Proc Natl Acad Sci USA 101:10913–10918

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Saouma CT, Kaminsky W, Mayer JM (2013) Polyhedron 58:60–64

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Albers A, Demeshko S, Pröpper K, Dechert S, Bill E, Meyer F (2013) J Am Chem Soc 135:1704–1707

    Article  CAS  PubMed  Google Scholar 

  56. Connelly NG, Geiger WE (1996) Chem Rev 96:877–910

    Article  CAS  PubMed  Google Scholar 

  57. Sawyer DT, Sobkowiak A, Roberts JL Jr (1995) Electrochemistry for chemists. Wiley, New York

    Google Scholar 

Download references

Acknowledgments

Funding was provided by the National Institutes of Health (GM065313). We thank Eckhard Bill and Wilda Vargas for preliminary experiments, and Richard Lewis for checking reproducibility of the syntheses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick L. Holland.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3544 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reesbeck, M.E., Rodriguez, M.M., Brennessel, W.W. et al. Oxidized and reduced [2Fe–2S] clusters from an iron(I) synthon. J Biol Inorg Chem 20, 875–883 (2015). https://doi.org/10.1007/s00775-015-1272-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-015-1272-4

Keywords

Navigation