Skip to main content
Log in

Thiol-mediated multiple mechanisms centered on selenodiglutathione determine selenium cytotoxicity against MCF-7 cancer cells

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Selenium (Se) is an essential antioxidative micronutrient but can exert cancer-selective cytotoxicity if the nutritional levels are too high. Selenodiglutathione (GSSeSG) is a primary Se metabolite conjugated with two glutathione (GSH) moieties. GSSeSG has been suggested to be an important molecule for cytotoxicity. Here, we propose the underlying mechanisms for the potent cytotoxicity of GSSeSG: cellular intake; reductive metabolism; production of reactive oxygen species; oxidative damage to DNA; apoptosis induction. GSSeSG rather than selenite decreased cell viability and induced apoptosis accompanied by increases in intracellular Se contents. Therefore, GSSeSG-specific cytotoxicity may be ascribed to its preferable incorporation. Base oxidation and strand fragmentation in genomic DNA preceded cell death, suggesting that oxidative stress (including DNA damage) is crucial for GSSeSG cytotoxicity. Strand breaks of purified DNA were caused by the coexistence of GSSeSG and thiols (GSH, cysteine, homocysteine), but not the oxidized form or non-thiol reductants. This implies the important role of intracellular thiols in the mechanism of Se toxicity. GSH-assisted DNA strand breaks were inhibited by specific scavengers for hydrogen peroxide or hydroxyl radicals. The GSSeSG metabolite selenide induced some DNA strand breaks without GSH, whereas elemental Se did so only with GSH. These observations suggest involvement of Fenton-type reaction in the absence of transition metals and reactivation of inert elemental Se. Overall, our results suggest that chemical interactions between Se and the sulfur of thiols are crucial for the toxicity mechanisms of Se.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

GSH:

Glutathione

GSSeSG:

Selenodiglutathione

GSSG:

Oxidized glutathione

HSe :

Hydrogen selenide

H2SeO3 :

Selenous acid

ROS:

Reactive oxygen species

SSB:

Single-strand break

References

  1. Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG (1973) Science 179:588–590

    Article  CAS  PubMed  Google Scholar 

  2. Cone JE, Del RRM, Davis JN, Stadtman TC (1976) Proc Natl Acad Sci 73:2659–2663

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Kryukov GV, Castellano S, Novoselov SV, Lobanov AV, Zehtab O, Guigó R, Gladyshev VN (2003) Science 300:1439–1443

    Article  CAS  PubMed  Google Scholar 

  4. Moustafa ME, Carlson BA, Anver MR, Bobe G, Zhong N, Ward JM, Perella CM, Hoffmann VJ, Rogers K, Combs GF Jr, Schweizer U, Merlino G, Gladyshev VN, Hatfield DL (2013) PLoS One 8:e57389

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Vinceti M, Wei ET, Malagoli C, Bergomi M, Vivoli G (2001) Rev Environ Health 16:233–251

    Article  CAS  PubMed  Google Scholar 

  6. Rayman MP (2008) Br J Nutr 100:254–268

    CAS  PubMed  Google Scholar 

  7. Vinceti M, Maraldi T, Bergomi M, Malagoli C (2009) Rev Environ Health 24:231–248

    Article  CAS  PubMed  Google Scholar 

  8. Valdiglesias V, Pasaro E, Mendez J, Laffon B (2010) Arch Toxicol 84:337–351

    Article  CAS  PubMed  Google Scholar 

  9. Fairweather-Tait SJ, Bao Y, Broadley MR, Collings R, Ford D, Hesketh JE, Hurst R (2011) Antioxid Redox Signal 14:1337–1338

    Article  CAS  PubMed  Google Scholar 

  10. Husbeck B, Nonn L, Peehl DM, Knox SJ (2006) Prostate 66:218–225

    Article  CAS  PubMed  Google Scholar 

  11. Jariwalla RJ, Gangapurkar B, Nakamura D (2009) Br J Nutr 101:182–189

    Article  CAS  PubMed  Google Scholar 

  12. Whanger P, Vendeland S, Park YC, Xia Y (1996) Ann Clin Lab Sci 26:99–113

    CAS  PubMed  Google Scholar 

  13. Shiobara Y, Yoshida T, Suzuki KT (1998) Toxicol Appl Pharmacol 152:309–314

    Article  CAS  PubMed  Google Scholar 

  14. Nakamuro K, Okuno T, Hasegawa T (2000) J Health Sci 46:418–421

    Article  CAS  Google Scholar 

  15. Finley JW (2006) Nutr Rev 64:146–151

    Article  PubMed  Google Scholar 

  16. Sun GX, Liu X, Williams PN, Zhu YG (2010) Environ Sci Technol 44:6706–6711

    Article  CAS  PubMed  Google Scholar 

  17. Ammar EM, Couri D (1981) Neurotoxicology 2:383–386

    CAS  PubMed  Google Scholar 

  18. Wastney ME, Combs GF Jr, Canfield WK, Taylor PR, Patterson KY, Hill AD, Moler JE, Patterson BH (2011) J Nutr 141:708–717

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Brozmanová J, Mániková D, Vlčková V, Chovanec M (2010) Arch Toxicol 84:919–938

    Article  PubMed  Google Scholar 

  20. Peyroche G, Saveanu C, Dauplais M, Lazard M, Beuneu F, Decourty L, Malabat C, Jacquier A, Blanquet S, Plateau P (2012) PLoS One 7:e36343

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Ganther HE (1971) Biochemistry 10:4089–4098

    Article  CAS  PubMed  Google Scholar 

  22. Nishida H, Ando M, Itoh K, Ueda K, Nishida Y, Okamoto Y, Toda C, Kojima N (2010) Chem Pharm Bull (Tokyo) 58:957–960

    Article  CAS  Google Scholar 

  23. Ando M, Nishida H, Ueda K, Itoh K, Okamoto Y, Kojima N (2011) J Health Sci 57:72–77

    Article  CAS  Google Scholar 

  24. Park YC, Kim JB, Heo Y, Park DC, Lee IS, Chung HW, Han JH, Chung WG, Vendeland SC, Whanger PD (2004) Biol Trace Elem Res 98:143–157

    Article  CAS  PubMed  Google Scholar 

  25. Gabel-Jensen C, Gammelgaard B, Bendahl L, Stürup S, Jøns O (2006) Anal Bioanal Chem 384:697–702

    Article  CAS  PubMed  Google Scholar 

  26. Wu L, Lanfear J, Harrison PR (1995) Carcinogenesis 16:1579–1584

    Article  CAS  PubMed  Google Scholar 

  27. Fleming J, Ghise A, Harrison PR (2001) Nutr Cancer 40:42–49

    Article  CAS  PubMed  Google Scholar 

  28. Seko Y, Imura N (1997) Biomed Environ Sci 10:333–339

    CAS  PubMed  Google Scholar 

  29. Okamoto Y, Chou PH, Kim SY, Suzuki N, Laxmi YRS, Okamoto K, Liu X, Matsuda T, Shibutani S (2008) Chem Res Toxicol 21:1120–1124

    Article  CAS  PubMed  Google Scholar 

  30. Wang L, Hirayasu K, Ishizawa M, Kobayashi Y (1994) Nucleic Acids Res 22:1774–1775

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Tarze A, Dauplais M, Grigoras I, Lazard M, Ha-Duong NT, Barbier F, Blanquet S, Plateau P (2007) J Biol Chem 282:8759–8767

    Article  CAS  PubMed  Google Scholar 

  32. Olm E, Fernandes AP, Hebert C, Rundlöf AK, Larsen EH, Danielsson O, Björnstedt M (2009) Proc Nat Acad Sci 106:11400–11405

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Weekley CM, Jeong G, Tierney ME, Hossain F, Maw AM, Shanu A, Harris HH, Witting PK (2014) J Biol Inorg Chem 19:813–828

    Article  CAS  PubMed  Google Scholar 

  34. Pastore A, Piemonte F, Locatelli M, Russo AL, Gaeta LM, Tozzi G, Federici G (2001) Clin Chem 47:1467–1469

    CAS  PubMed  Google Scholar 

  35. Seko Y, Saito Y, Kitahara J, Imura N (1989) In: Wendel A (ed) Selenium in biology and medicine. Springer, Berlin, pp 70–73

Download references

Acknowledgments

We are indebted to Dr. Kazuo Itoh and Dr. Yoshitaka Odo for the use of the ICP-MS. We would like to express gratitude to all the laboratory members who participated in this study for their technical support, especially Ms. Mai Takagi, Mr. Masayuki Hayashi, and Ms. Shino Matsuda for the data used in the present study. This work was supported by a Grant-in-Aid for Young Scientists (B) (Grant Number 23790161) and the Research Institute of Meijo University to K. U.

Conflict of interest

The authors declare they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nakao Kojima.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tobe, T., Ueda, K., Ando, M. et al. Thiol-mediated multiple mechanisms centered on selenodiglutathione determine selenium cytotoxicity against MCF-7 cancer cells. J Biol Inorg Chem 20, 687–694 (2015). https://doi.org/10.1007/s00775-015-1254-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-015-1254-6

Keywords

Navigation