Skip to main content
Log in

Insights into the structural determinants of substrate specificity and activity in mouse aldehyde oxidases

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

In this work, a combination of homology modeling and molecular dynamics (MD) simulations was used to investigate the factors that modulate substrate specificity and activity of the mouse AOX isoforms: mAOX1, mAOX2 (previously mAOX3l1), mAOX3 and mAOX4. The results indicate that the AOX isoform structures are highly preserved and even more conserved than the corresponding amino acid sequences. The only differences are at the protein surface and substrate-binding site region. The substrate-binding site of all isoforms consists of two regions: the active site, which is highly conserved among all isoforms, and a isoform-specific region located above. We predict that mAOX1 accepts a broader range of substrates of different shape, size and nature relative to the other isoforms. In contrast, mAOX4 appears to accept a more restricted range of substrates. Its narrow and hydrophobic binding site indicates that it only accepts small hydrophobic substrates. Although mAOX2 and mAOX3 are very similar to each other, we propose the following pairs of overlapping substrate specificities: mAOX2/mAOX4 and mAOX3/mAXO1. Based on these considerations, we propose that the catalytic activity between all isoforms should be similar but the differences observed in the binding site might influence the substrate specificity of each enzyme. These results also suggest that the presence of several AOX isoforms in mouse allows them to oxidize more efficiently a wider range of substrates. This contrasts with the same or other organisms that only express one isoform and are less efficient or incapable of oxidizing the same type of substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Garattini E, Mendel R, Romão MJ, Wright R, Terao M (2003) Biochem J 372:15–32. doi:10.1042/BJ20030121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Garattini E, Fratelli M, Terao M (2009) Hum Genomics 4:119–130

    PubMed Central  CAS  PubMed  Google Scholar 

  3. Kurosaki M, Bolis M, Fratelli M, Barzago MM, Pattini L, Perretta G, Terao M, Garattini E (2013) Cell Mol Life Sci 70:1807–1830. doi:10.1007/s00018-012-1229-5

    Article  CAS  PubMed  Google Scholar 

  4. Terao M, Kurosaki M, Demontis S, Zanotta S, Garattini E (1998) Biochem J 332(Pt 2):383–393

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Calzi ML, Raviolo C, Ghibaudi E, de Gioia L, Salmona M, Cazzaniga G, Kurosaki M, Terao M, Garattini E (1995) J Biol Chem 270:31037–31045

    Article  CAS  PubMed  Google Scholar 

  6. Garattini E, Fratelli M, Terao M (2008) Cell Mol Life Sci 65:1019–1048. doi:10.1007/s00018-007-7398-y

    Article  CAS  PubMed  Google Scholar 

  7. Kurosaki M, Terao M, Barzago MM, Bastone A, Bernardinello D, Salmona M, Garattini E (2004) J Biol Chem 279:50482–50498. doi:10.1074/jbc.M408734200

    Article  CAS  PubMed  Google Scholar 

  8. Garattini E, Terao M (2011) Drug Metab Rev 43:374–386. doi:10.3109/03602532.2011.560606

    Article  CAS  PubMed  Google Scholar 

  9. Garattini E, Terao M (2012) Expert Opin Drug Metab Toxicol 8:487–503. doi:10.1517/17425255.2012.663352

    Article  CAS  PubMed  Google Scholar 

  10. Garattini E, Terao M (2013) Expert Opin Drug Discov 8:641–654. doi:10.1517/17460441.2013.788497

    Article  CAS  PubMed  Google Scholar 

  11. Hartmann T, Terao M, Garattini E, Teutloff C, Alfaro JF, Jones JP, Leimkühler S (2012) Drug Metab Dispos 40:856–864. doi:10.1124/dmd.111.043828

    Article  CAS  PubMed  Google Scholar 

  12. Coelho C, Mahro M, Trincao J, Carvalho ATP, Ramos MJ, Terao M, Garattini E, Leimküehler S, Romão MJ (2012) J Biol Chem 287:40690–40702. doi:10.1074/jbc.M112.390419

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Sali A, Blundell TL (1993) J Mol Biol 234:779–815. doi:10.1006/jmbi.1993.1626

    Article  CAS  PubMed  Google Scholar 

  14. Fiser A, Do RK, Sali A (2000) Protein Sci 9:1753–1773. doi:10.1110/ps.9.9.1753

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Martí-Renom MA, Stuart AC, Fiser A, Sánchez R, Melo F, Sali A (2000) Annu Rev Biophys Biomol Struct 29:291–325. doi:10.1146/annurev.biophys.29.1.291

    Article  PubMed  Google Scholar 

  16. Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen MY, Pieper U, Sali A (2006) Curr Protoc Bioinform. Chapter 5, Unit 5.6. doi:10.1002/0471250953.bi0506s15

  17. Shen MY, Sali A (2006) Protein Sci 15:2507–2524. doi:10.1110/ps.062416606

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  PubMed  Google Scholar 

  19. Becke AD (1996) J Chem Phys 104:1040–1046

    Article  CAS  Google Scholar 

  20. Lee C, Yang W, Parr RG (1988) Phys Rev B Condens Matter 37:785–789

    Article  CAS  PubMed  Google Scholar 

  21. Neves RPP, Sousa SF, Fernandes PA, Ramos MJ (2013) J Chem Theory Comput 9:2718–2732

    Article  CAS  Google Scholar 

  22. Bayly CI, Cieplak P, Cornell W, Kollman PA (1993) J Phys Chem 97:10269–10280

    Article  CAS  Google Scholar 

  23. Batsanov SS (2001) Inorg Mater 37:871–885

  24. Carvalho AT, Teixeira AF, Ramos MJ (2013) J Comput Chem 34:1540–1548. doi:10.1002/jcc.23287

    Article  CAS  PubMed  Google Scholar 

  25. Case DA, Darden TA, Cheatham TE, Simmerling CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Roberts B, Hayik S, Roitberg A, Seabra G, Swails J, Götz AW, Kolossváry I, Wong KF, Paesani F, Vanicek J, Wolf RM, Liu J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Cai Q, Ye X, Wang J, Hsieh MJ, Cui G, Roe DR, Mathews DH, Seetin MG, Salomon-Ferrer R, Sagui C, Babin V, Luchko T, Gusarov S, Kovalenko A, Kollman PA (2012) Amber 12. University of California, San Francisco

    Google Scholar 

  26. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Proteins 65:712–725. doi:10.1002/prot.21123

    Article  CAS  PubMed  Google Scholar 

  27. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) J Comput Chem 25:1157–1174. doi:10.1002/jcc.20035

    Article  CAS  PubMed  Google Scholar 

  28. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM Jr, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) J Am Chem Soc 117:5179–5197

    Article  CAS  Google Scholar 

  29. Bras NFB, Cerqueira NMFSA, Fernandes PA, Ramos MJ (2008) Int J Quantum Chem 108:2030–2040

    Article  CAS  Google Scholar 

  30. Gesto DS, Cerqueira NMFSA, Fernandes PA, Ramos MJ (2013) J Amer Chem Soc 135:7146–7158. doi:10.1021/ja310165u

  31. Mahro M, Brás NF, Cerqueira NM, Teutloff C, Coelho C, Romão MJ, Leimkühler S (2013) PLoS One 8:e82285. doi:10.1371/journal.pone.0082285

    Article  PubMed Central  PubMed  Google Scholar 

  32. Izaguirre JA, Catarello DP, Wozniak JM, Skeel RD (2001) J Chem Phys 114:2090–2098

    Article  CAS  Google Scholar 

  33. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  34. Essman U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) J Chem Phys 103:8577–8593

    Article  Google Scholar 

  35. Ribeiro JV, Tamames JA, Cerqueira NM, Fernandes PA, Ramos MJ (2013) Chem Biol Drug Des 82:743–755. doi:10.1111/cbdd.12197

    Article  CAS  PubMed  Google Scholar 

  36. Ribeiro JV, Cerqueira NMFSA, Moreira IS, Fernandes PA, Ramos MJ (2012) Theor Chem Acc 131:1271

    Article  Google Scholar 

  37. Vila R, Kurosaki M, Barzago MM, Kolek M, Bastone A, Colombo L, Salmona M, Terao M, Garattini E (2004) J Biol Chem 279:8668–8683. doi:10.1074/jbc.M308137200

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the program FEDER/COMPETE and the Fundação para a Ciência e Tecnologia (FCT) for financial support [Projects PEst-C/EQB/LA0006/2013;EXCL/QEQ-COM/0394/2012; PTDC/BIA-PRO/118377/2010; and Grant SFRH/BPD/84581/2012 (CC)].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maria João Romão or Maria João Ramos.

Additional information

N. M. F. S. A. Cerqueira, C. Coelho and N. F. Brás contributed equally to this work.

Responsible Editors: José Moura and Paul Bernhardt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

775_2014_1198_MOESM1_ESM.pdf

Figure S1 Sequence alignment of the mAOX1, mAOX3, mAOX2 and mAOX4 isoforms. Colored spheres mark the Isoenzyme-specific amino acid residues (mAOX1 in pink; mAOX3 in green; mAOX2 in orange; and mAOX4 in purple) (PDF 1155 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cerqueira, N.M.F.S.A., Coelho, C., Brás, N.F. et al. Insights into the structural determinants of substrate specificity and activity in mouse aldehyde oxidases. J Biol Inorg Chem 20, 209–217 (2015). https://doi.org/10.1007/s00775-014-1198-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-014-1198-2

Keywords

Navigation