Skip to main content

Advertisement

Log in

Kinetics of serotonin oxidation by heme–Aβ relevant to Alzheimer’s disease

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Serotonin (5-HT) is an essential neurotransmitter for cognitive functions and formation of new memories. A deficit in 5-HT dependent neuronal activity is somewhat specific for Alzheimer’s disease. Metal-mediated oxidative degradation of neurotransmitters by Aβ bound to metals has been investigated. Heme-bound Aβ is found to catalyze the oxidative degradation of 5-HT leading to the formation of neurotoxic products dihydroxybitryptamine and tyrptamine-4,5-dione. The catalytic degradation of 5-HT is of first order with respect to both heme–Aβ and H2O2, and the maximum rate of 5-HT oxidation is obtained at physiological pH (pH 7–7.5). pH perturbation of the binding affinity of heme–Aβ complex for 5-HT indicates that the binding of the substrate (5-HT) is not the rate-determining step. Arg5 acts as a second-sphere residue facilitating the O–O bond cleavage, the mutation of which leads to a decrease in the rate of 5-HT oxidation. The pull effect of the Arg5 residue tends to facilitate the generation of the active oxidant, Compound I, below neutral pH, while the ionization of the phenol group of the substrate facilitates the generation of the active substrate above neutral pH. A combination of these two opposing effects results in the highest activity at physiological pH. Apart from the Arg5 residue, the Tyr10 residue is found to play a vital role in the 5-HT oxidation by heme–Aβ complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. Rauk A (2009) Chem Soc Rev 38:2698–2715

    Article  CAS  PubMed  Google Scholar 

  2. Rodríguez JJ, Noristani HN, Verkhratsky A (2012) Progress Neurobiol 99:15–41

    Article  Google Scholar 

  3. Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K (1985) Proc Natl Acad Sci USA 82:4245–4249

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Glenner GG, Wong CW (1984) Biochem Biophys Res Commun 120:885–890

    Article  CAS  PubMed  Google Scholar 

  5. Selkoe DJ (2000) Ann N Y Acad Sci 924:17–25

    Article  CAS  PubMed  Google Scholar 

  6. Parker WD, Ba JP, Filley CM, Kleinschmidt-DeMasters BK (1994) Neurology 44:1090–1096

    Article  PubMed  Google Scholar 

  7. Mutisya EM, Bowling AC, Beal MF (1994) J Neurochem 63:2179–2184

    Article  CAS  PubMed  Google Scholar 

  8. Connor JR, Snyder BS, Beard JL, Fine RE, Mufson EJ (1992) J Neurosci Res 31:327–335

    Article  CAS  PubMed  Google Scholar 

  9. Smith MA, Nunomura A, Zhu X, Takeda A, Perry G (2000) Antioxid Redox Signal 2:413–420

    Article  CAS  PubMed  Google Scholar 

  10. Xu Y, Yan J, Zhou P, Li J, Gao H, Xia Y, Wang Q (2012) Progress Neurobiol 97:1–13

    Article  Google Scholar 

  11. Atamna H, Boyle K (2006) Proc Natl Acad Sci USA 103:3381–3386

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Hardy J, Selkoe DJ (2002) Science 297:353–356

    Article  CAS  PubMed  Google Scholar 

  13. Bush AI (2003) Trends Neurosci 26:207–214

    Article  CAS  PubMed  Google Scholar 

  14. LeVine SM (1997) Brain Res 760:298–303

    Article  CAS  PubMed  Google Scholar 

  15. Atamna H, Frey WH (2004) Proc Natl Acad Sci USA 101:11153–11158

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Atamna H, Liu J, Ames BN (2001) J Biol Chem 276:48410–48416

    CAS  PubMed  Google Scholar 

  17. Atamna H, Killilea DW, Killilea AN, Ames BN (2002) Proc Natl Acad Sci USA 99:14807–14812

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Pramanik D, Dey SG (2011) J Am Soc Chem 133:81–87

    Article  CAS  Google Scholar 

  19. Pramanik D, Ghosh C, Mukherjee S, Dey SG (2013) Coord Chem Rev 257:81–92

    Article  CAS  Google Scholar 

  20. Atamna H, Frey Ii WH, Ko N (2009) Arch Biochem Biophys 487:59–65

    Article  CAS  PubMed  Google Scholar 

  21. Bao Q, Luo Y, Li W, Sun X, Zhu C, Li P, Huang Z-X, Tan X (2011) J Biol Inorg Chem 16:809–816

    Article  CAS  PubMed  Google Scholar 

  22. Arnsten AFT, Li B-M (2005) Biol Psychiatry 57:1377–1384

    Article  CAS  PubMed  Google Scholar 

  23. Larson EB, Kukull WA, Katzman RL (1992) Annu Rev Public Health 13:431–449

    Article  CAS  PubMed  Google Scholar 

  24. Friedman JI, Adler DN, Davis KL (1999) Biol Psychiatry 46:1243–1252

    Article  CAS  PubMed  Google Scholar 

  25. Li JIE, Zhu MIN, Manning-Bog AB, Di Monte DA, Fink AL (2004) FASEB J 18:962–964

    Article  CAS  PubMed  Google Scholar 

  26. da Silva GFZ, Tay WM, Ming L-J (2005) J Biol Chem 280:16601–16609

    Article  PubMed  Google Scholar 

  27. da Silva GFZ, Ming L-J (2005) Angew Chem 117:5637–5640

    Article  Google Scholar 

  28. da Silva GFZ, Ming L-J (2007) Angew Chem 119:3401–3405

    Article  Google Scholar 

  29. Ciregna D, Monzani E, Thiabaud G, Pizzocaro S, Casella L (2013) Chem Commun 49:4027–4029

    Article  CAS  Google Scholar 

  30. Thiabaud G, Pizzocaro S, Garcia-Serres R, Latour J-M, Monzani E, Casella L (2013) Angew Chem Int Ed 52:8041–8044

    Article  CAS  Google Scholar 

  31. Pramanik D, Sengupta K, Mukherjee S, Dey SG, Dey A (2012) J Am Soc Chem 134:12180–12189

    Article  CAS  Google Scholar 

  32. Pramanik D, Ghosh C, Dey SG (2011) J Am Soc Chem 133:15545–15552

    Article  CAS  Google Scholar 

  33. Halliday GM, McCann HL, Pamphlett R, Brooks WS, Creasey H, McCusker E, Cotton RGH, Broe GA, Harper CG (1992) Acta Neuropathol 84:638–650

    CAS  PubMed  Google Scholar 

  34. Lyness SA, Zarow C, Chui HC (2003) Neurobiol Aging 24:1–23

    Article  CAS  PubMed  Google Scholar 

  35. Chen CPLH, Eastwood SL, Hope T, McDonald B, Francis PT, Esiri MM (2000) Neuropathol Appl Neurobiol 26:347–355

    Article  CAS  PubMed  Google Scholar 

  36. Bowen DM, Procter AW, Mann DMA, Snowden JS, Esiri MM, Neary D, Francis PT (2008) Psychopharmacology 196:603–610

    Article  CAS  PubMed  Google Scholar 

  37. Garcia-Alloza M, Gil-Bea FJ, Diez-Ariza M, Chen CPLH, Francis PT, Lasheras B, Ramirez MJ (2005) Neuropsychologia 43:442–449

    Article  CAS  PubMed  Google Scholar 

  38. Lai MKP, Tsang SWY, Francis PT, Keene J, Hope T, Esiri MM, Spence I, Chen CPLH (2002) Neuroreport 13:1175–1178

  39. Dunford HB, Hsuanyu Y (1999) Biochem Cell Biol 77:449–457

    Article  CAS  PubMed  Google Scholar 

  40. Kishi T, Tanaka M, Tanaka J (1977) Bull Chem Soc Jpn 50:1267–1271

    Article  CAS  Google Scholar 

  41. Yi L, Ragsdale SW (2007) J Biol Chem 282:21056–21067

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Ximenes VF, Maghzal GJ, Turner R, Kato Y, Winterbourn CC, Kettle AJ (2010) Biochem J 425:285–293

  43. Neumann B, Yarman A, Wollenberger U, Scheller F (2014) Anal Bioanal Chem 406:3359–3364

  44. Heinecke JW, Li W, Daehnke HL, Goldstein JA (1993) J Biol Chem 268:4069–4077

    CAS  PubMed  Google Scholar 

  45. Waley SG (1975) Biochem J 149:547

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Ghosh C, Pramanik D, Mukherjee S, Dey A, Dey SG (2013) Inorg Chem 52:362–368

    Article  CAS  PubMed  Google Scholar 

  47. Winterbourn CC, Kettle AJ (2003) Biochem Biophys Res Commun 305:729–736

    Article  CAS  PubMed  Google Scholar 

  48. Fang X, Jin F, Jin H, von Sonntag C (1998) J Chem Soc Perkin Trans 2:259–264

    Article  Google Scholar 

  49. Subrahmanyam VV, Kolachana P, Smith MT (1991) Arch Biochem Biophys 286:76–84

    Article  CAS  PubMed  Google Scholar 

  50. Dolphin D, Forman A, Borg DC, Fajer J, Felton RH (1971) Proc Natl Acad Sci USA 68:614–618

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. La Mar GN, de Ropp JS, Smith KM, Langry KC (1981) J Biol Chem 256:237–243

    PubMed  Google Scholar 

  52. Kaneko Y, Tamura M, Yamazaki I (1980) Biochemistry 19:5795–5799

    Article  CAS  PubMed  Google Scholar 

  53. George P (1953) Biochem J 54:267–276

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Smulevich G, Feis A, Howes B (2005) Acc Chem Res 38:433–440

    Article  CAS  PubMed  Google Scholar 

  55. Adak S, Mazumder A, Banerjee RK (1996) Biochem J 314:985–991

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Crino PB, Vogt BA, Chen J-C, Volicer L (1989) Brain Res 504:247–257

    Article  CAS  PubMed  Google Scholar 

  57. Wong K-S, Goyal RN, Wrona MZ, Blank CL, Dryhurst G (1993) Biochem Pharmacol 46:1637–1652

    Article  CAS  PubMed  Google Scholar 

  58. Jiang XR, Wrona MZ, Alguindigue SS, Dryhurst G (2004) Chem Res Toxicol 17:357–369

    Article  CAS  PubMed  Google Scholar 

  59. Jiang XR, Dryhurst G (2002) Chem Res Toxicol 15:1242–1247

    Article  CAS  PubMed  Google Scholar 

  60. Wrona MZ, Dryhurst G (2001) Chem Res Toxicol 14:1184–1192

    Article  CAS  PubMed  Google Scholar 

  61. Burke WJ, Chung HD, Huang JS, Huang SS, Haring JH, Strong R, Marchshall GL, Joh TH (1988) Ann Neurol 24:532–536

    Article  CAS  PubMed  Google Scholar 

  62. Marcyniuk B, Mann DM, Yates PO (1986) J Neurol Sci 76:335–345

    Article  CAS  PubMed  Google Scholar 

  63. Opazo C, Huang X, Cherny RA, Moir RD, Roher AE, White AR, Cappai R, Masters CL, Tanzi RE, Inestrosa NC, Bush AI (2002) J Biol Chem 277:40302–40308

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank SERC Fast Track Scheme SR/FT/CS-34/2010, Department of Science and Technology, Government of India and IACS for funding this research. S. M. is thankful to the Council of Scientific and Industrial Research, India, for a Junior Research Fellowship. M. S. is thankful to IACS-integrated Ph.D. programme for Junior Research Fellowship. We thank Professor T. K. Mandal of Polymer Science Unit, IACS, for allowing us to use his HPLC machine (Waters 1525 Separation Module) and Dr. Abhishek Dey for his helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somdatta Ghosh Dey.

Electronic supplementary material

Below is the link to the electronic supplementary material.

775_2014_1193_MOESM1_ESM.pdf

Area under the curve for 5-HT and residual 5-HT after oxidation obtained from HPLC data, separation of the 5-HT and its products by RP-HPLC after its incubation with excess heme–Aβ, Eadie-Hofstee plots of 5-HT oxidation by heme–Aβ(1–16), saturation plot of the initial rate of oxidation of 5-HT (ΔA 317nm/s) by heme- heme–Aβ(1–16) against various 5-HT concentration at different pH, absorption spectra of 5-HT titration to heme–Aβ(1–16) and K d values at different pH, absorption spectra of 5-HT titration heme-bound Tyr10Phe mutant of Aβ(1–16) at different pH values, 5HT titration with free heme are available online as ESI. (PDF 3121 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, S., Seal, M. & Dey, S.G. Kinetics of serotonin oxidation by heme–Aβ relevant to Alzheimer’s disease. J Biol Inorg Chem 19, 1355–1365 (2014). https://doi.org/10.1007/s00775-014-1193-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-014-1193-7

Keywords

Navigation