Skip to main content
Log in

High-frequency and high-field electron paramagnetic resonance (HFEPR): a new spectroscopic tool for bioinorganic chemistry

  • Minireview
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

This minireview describes high-frequency and high-field electron paramagnetic resonance (HFEPR) spectroscopy in the context of its application to bioinorganic chemistry, specifically to metalloproteins and model compounds. HFEPR is defined as frequencies above ~100 GHz (i.e., above W-band) and a resonant field reaching 25 T and above. The ability of HFEPR to provide high-resolution determination of g values of S = 1/2 is shown; however, the main aim of the minireview is to demonstrate how HFEPR can extract spin Hamiltonian parameters [zero-field splitting (zfs) and g values] for species with S > 1/2 with an accuracy and precision unrivalled by other physical methods. Background theory on the nature of zfs in S = 1, 3/2, 2, and 5/2 systems is presented, along with selected examples of HFEPR spectroscopy of each that are relevant to bioinorganic chemistry. The minireview also provides some suggestions of specific systems in bioinorganic chemistry where HFEPR could be rewardingly applied, in the hope of inspiring workers in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. A 2 B 2 explains (p 155) [4] that this is more properly a ΔM S = 0 transition, as the \( \left\langle {S,M_{\text{S}} } \right| = \left\langle {1, +1} \right| {\text{ and}}\, \left\langle {1, -1} \right|\) states are mixed, so that the transition is better described as \( \left\langle {1, \pm 1} \right| \leftrightarrow \left\langle {1, \pm 1} \right|\), which is favored with B 1B 0, than as \( \left\langle {1, \pm 1} \right| \leftrightarrow \left\langle {1, \mp 1} \right|\).

  2. EasySpin is a MATLAB® toolbox for simulating and fitting EPR spectra. EasySpin runs on a variety of operating systems and is available free of charge; see: http://www.easyspin.org/.

References

  1. Que L Jr (2000) Physical methods in bioinorganic chemistry: spectroscopy and magnetism. University Science Books, Sausalito

    Google Scholar 

  2. Sahu ID, McCarrick RM, Lorigan GA (2013) Biochemistry 52:5967–5984. doi:10.1021/bi400834a

    Article  CAS  PubMed  Google Scholar 

  3. Drago RS (1992) Physical methods for chemists. Saunders College, Ft. Worth

  4. Abragam A, Bleaney B (1986) Electron paramagnetic resonance of transition ions. Dover, Mineola

  5. Poole CP (1996) Electron spin resonance. Dover, Mineola

  6. Weil JA, Bolton JR (2007) Electron paramagnetic resonance: elementary theory and practical applications. Wiley, Hoboken

    Google Scholar 

  7. Weltner W Jr (1983) Magnetic atoms and molecules. Dover, Mineola

  8. Hanson G, Berliner L (eds) (2010) Metals in biology: applications of high-resolution EPR to metalloenzymes. Springer, New York

    Google Scholar 

  9. Hanson G, Berliner L (eds) (2009) High resolution EPR: applications to metalloenzymes and metals in medicine. Springer, New York

    Google Scholar 

  10. Andersson KK, Schmidt PP, Katterle B, Strand KR, Palmer AE, Lee S-K, Solomon EI, Gräslund A, Barra A-L (2003) J Biol Inorg Chem 8:235–247. doi:10.1007/s00775-002-0429-0

    CAS  PubMed  Google Scholar 

  11. Grinberg O, Berliner LJ (eds) (2004) Very high frequency (VHF) ESR/EPR. Springer, New York

    Google Scholar 

  12. Morley GW, Brunel L-C, Tol Jv (2008) Rev Sci Instrum 79:064703. doi:10.1063/1.2937630

    Article  PubMed  Google Scholar 

  13. Takahashi S, Brunel LC, Edwards DT, van Tol J, Ramian G, Han S, Sherwin MS (2012) Nature 489:409–413. doi:10.1038/nature11437

    Article  CAS  PubMed  Google Scholar 

  14. Stoll S (2010) In: Gilbert BC, Murphy DM, Chechik V (eds) Electron paramagnetic resonance. Royal Society of Chemistry, London, pp 107–154. doi:10.1039/9781849730877-00107

    Google Scholar 

  15. Sofia HJ, Chen G, Hetzler BG, Reyes-Spindola JF, Miller NE (2001) Nucleic Acids Res 29:1097–1106. doi:10.1093/nar/29.5.1097

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Booker SJ (2012) Biochim Biophys Acta Proteins Proteomics 1824:1151–1153. doi:10.1016/j.bbapap.2012.07.006

    Article  CAS  Google Scholar 

  17. Wiig JA, Hu Y, Lee CC, Ribbe MW (2012) Science 337:1672–1675. doi:10.1126/science.1224603

    Article  CAS  PubMed  Google Scholar 

  18. Blankenship RE (2002) Molecular mechanisms of photosynthesis. Blackwell, Oxford

  19. Yukl ET, Liu F, Krzystek J, Shin S, Jensen LMR, Davidson VL, Wilmot CM, Liu A (2013) Proc Natl Acad Sci USA 110:4569–4573. doi:10.1073/pnas.1215011110

    Article  PubMed  Google Scholar 

  20. Stoll S, Shafaat HS, Krzystek J, Ozarowski A, Tauber MJ, Kim JE, Britt RD (2011) J Am Chem Soc 133:18098–18101. doi:10.1021/ja208462t

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Rieger PH (1994) Coord Chem Rev 135–136:203–286. doi:10.1016/0010-8545(94)80069-3

    Article  Google Scholar 

  22. McGarvey BR (1998) Coord Chem Rev 170:75–92. doi:10.1016/S0010-8545(97)00073-8

    Article  CAS  Google Scholar 

  23. Walker FA (1999) Coord Chem Rev 185–186:471–534. doi:10.1016/S0010-8545(99)00029-6

    Article  Google Scholar 

  24. Boča R (2004) Coord Chem Rev 248:757–815. doi:10.1016/j.ccr.2004.03.001

    Article  Google Scholar 

  25. Neese F (2009) Coord Chem Rev 253:526–563. doi:10.1016/j.ccr.2008.05.014

    Article  CAS  Google Scholar 

  26. Neese F (2006) J Am Chem Soc 128:10213–10222. doi:10.1021/ja061798a

    Article  CAS  PubMed  Google Scholar 

  27. Bendix J, Brorson M, Schäffer CE (1993) Inorg Chem 32:2838–2849. doi:10.1021/ic00065a010

    Article  CAS  Google Scholar 

  28. McGavin DG, Tennant WC, Weil JA (1990) J Magn Reson 87:92–109. doi:10.1016/0022-2364(90)90088-Q

    Google Scholar 

  29. McGavin DG (1987) J Magn Reson 74:19–55. doi:10.1016/0022-2364(87)90077-1

    CAS  Google Scholar 

  30. Crouse BR, Meyer J, Johnson MK (1995) J Am Chem Soc 117:9612–9613. doi:10.1021/ja00142a049

    Article  CAS  Google Scholar 

  31. Knapp MJ, Krzystek J, Brunel L-C, Hendrickson DN (1999) Inorg Chem 38:3321–3328. doi:10.1021/ic9901012

    Article  CAS  PubMed  Google Scholar 

  32. Zein S, Duboc C, Lubitz W, Neese F (2008) Inorg Chem 47:134–142. doi:10.1021/ic701293n

    Article  CAS  PubMed  Google Scholar 

  33. Krzystek J, Ozarowski A, Telser J (2006) Coord Chem Rev 250:2308–2324. doi:10.1016/j.ccr.2006.03.016

    Article  CAS  Google Scholar 

  34. Krzystek J, Zvyagin SA, Ozarowski A, Trofimenko S, Telser J (2006) J Magn Reson 178:174–183. doi:10.1016/j.jmr.2005.09.007

    Article  CAS  PubMed  Google Scholar 

  35. Telser J, Ozarowski A, Krzystek J (2013) Electron paramagnetic resonance, vol 23. The Royal Society of Chemistry, London, pp 209–263. doi:10.1039/9781849734837-00209

  36. Venters RA, Nelson MJ, McLean PA, True AE, Levy MA, Hoffman BM, Orme-Johnson WH (1986) J Am Chem Soc 108:3487–3498. doi:10.1021/ja00272a054

    Google Scholar 

  37. True AE, Nelson MJ, Venters RA, Orme-Johnson WH, Hoffman BM (1988) J Am Chem Soc 110:1935–1943. doi:10.1021/ja00214a045

    Google Scholar 

  38. Wallar BJ, Lipscomb JD (1996) Chem Rev 96:2625–2658. doi:10.1021/cr9500489

    Google Scholar 

  39. Solomon EI, Brunold TC, Davis MI, Kemsley JN, Lee S-K, Lehnert N, Neese F, Skulan AJ, Yang Y-S, Zhou J (2000) Chem Rev 100:235–350. doi:10.1021/cr9900275

    Google Scholar 

  40. Que L Jr (2007) Acc Chem Res 40:493–500. doi:10.1021/ar700024g

    Google Scholar 

  41. Tinkham M (1956) Proc R Soc Lond A 236:535–548. doi:10.1098/rspa 1956.0154

    Google Scholar 

  42. Tinkham M (1956) Proc R Soc Lond A 236:549–563. doi:10.1098/rspa.1956.0155

  43. Hu C, Sulok CD, Paulat F, Lehnert N, Twigg AI, Hendrich MP, Schulz CE, Scheidt WR (2010) J Am Chem Soc 132:3737–3750. doi:10.1021/ja907584x

    Google Scholar 

  44. Münck E, Surerus KK, Hendrich MP (1993) Meth Enzym Part D 227:463–479. doi:10.1016/0076-6879(93)27019-D

    Google Scholar 

  45. Hendrich MP, Debrunner PG (1989) Biophys J 56:489–506. doi:10.1016/S0006-3495(89)82696-7

    Google Scholar 

  46. Hendrich MP, Gunderson W, Behan RK, Green MT, Mehn MP, Betley TA, Lu CC, Peters JC (2006) Proc Natl Acad Sci USA 103:17107–17112. doi:10.1073/pnas.0604402103

    Google Scholar 

  47. Gupta R, Lacy DC, Bominaar EL, Borovik AS, Hendrich MP (2012) J Am Chem Soc 134:9775–9784. doi:10.1021/ja303224p

    Google Scholar 

  48. Campbell KA, Yikilmaz E, Grant CV, Gregor W, Miller A-F, Britt RD (1999) J Am Chem Soc 121:4714–4715. doi:10.1021/ja9902219

    Google Scholar 

  49. Fann Y-C, J-l Ong, Nocek JM, Hoffman BM (1995) J Am Chem Soc 117:6109–6116. doi:10.1021/ja00127a025

  50. Aasa R (1970) J. Chem. Phys. 52:3919–3930. doi:10.1063/1.1673591

  51. Weisser JT, Nilges MJ, Sever MJ, Wilker JJ (2006) Inorg Chem 45:7736–7747. doi:10.1021/ic060685p

    Google Scholar 

  52. Gatteschi D, Barra AL, Caneschi A, Cornia A, Sessoli R, Sorace L (2006) Coord Chem Rev 250:1514–1529. doi:10.1016/j.ccr.2006.02.006

    Google Scholar 

  53. Telser J, Wu C–C, Chen K-Y, Hsu H-F, Smirnov D, Ozarowski A, Krzystek J (2009) J Inorg Biochem 102:487–495. doi:10.1016/j.jinorgbio.2009.01.016

    Google Scholar 

  54. Melchior M, Rettig SJ, Liboiron BD, Thompson KH, Yuen VG, McNeill JH, Orvig C (2001) Inorg Chem 40:4686–4690. doi:10.1021/ic000984t

    Google Scholar 

  55. Krzystek J, England J, Ray K, Ozarowski A, Smirnov D, Que L Jr, Telser J (2008) Inorg Chem 47:3483–3485. doi:10.1021/ic800411c

    Google Scholar 

  56. Usharani D, Janardanan D, Li C, Shaik S (2013) Acc Chem Res 46:471–482. doi:10.1021/ar300204y

    Google Scholar 

  57. Craft JL, Horng Y-C, Ragsdale SW, Brunold TC (2004) J Biol Inorg Chem 9:77–89. doi:10.1007/s00775-003-0499-7

    Google Scholar 

  58. Wojciechowska A, Daszkiewicz M, Staszak Z, Trusz-Zdybek A, Bieńko A, Ozarowski A (2011) Inorg Chem 50:11532–11542. doi:10.1021/ic201471f

    Google Scholar 

  59. Wojciechowska A, Gągor A, Duczmal M, Staszak Z, Ozarowski A (2013) Inorg Chem 52:4360–4371. doi:10.1021/ic3024919

    Google Scholar 

  60. Li Y, Zamble DB (2009) Chem Rev 109:4617–4643. doi:10.1021/cr900010n

    Google Scholar 

  61. Trofimenko S (1999) Scorpionates: the coordination chemistry of polypyrazolylborate ligands. Imperial College, London

  62. Trofimenko S (2004) Polyhedron 23:197–203. doi:10.1016/j.poly.2003.11.013

  63. McNaughton RL, Roemelt M, Chin JM, Schrock RR, Neese F, Hoffman BM (2010) J Am Chem Soc 132:8645–8656. doi:10.1021/ja1004619

    Google Scholar 

  64. Wu AJ, Penner-Hahn JE, Pecoraro VL (2004) Chem Rev 104:903–938. doi:10.1021/cr020627v

    Google Scholar 

  65. Cox N, Pantazis DA, Neese F, Lubitz W (2013) Acc Chem Res 46:1588–1596. doi:10.1021/ar3003249

    Google Scholar 

  66. McConnell IL, Grigoryants VM, Scholes CP, Myers WK, Chen P-Y, Whittaker JW, Brudvig GW (2012) J Am Chem Soc 134:1504–1512. doi:10.1021/ja203465y

    Google Scholar 

  67. Duboc C, Collomb M-N (2009) Chem Commun 2715–2717. doi:10.1039/B901185D

  68. Larrabee JA, Alessi CM, Asiedu ET, Cook JO, Hoerning KR, Klingler LJ, Okin GS, Santee SG, Volkert TL (1997) J Am Chem Soc 119:4182–4196. doi:10.1021/ja963555w

    Google Scholar 

  69. Maret W, Vallee BL (1993) Methods Enzymol 226:52–71. doi:10.1016/0076-6879(93)26005-T

    Google Scholar 

  70. Mathies G, Almeida RM, Gast P, Moura JJG, Groenen EJJ (2012) J Phys Chem B 116:7122–7128. doi:10.1021/jp3025655

    Google Scholar 

  71. Krzystek J, Swenson DC, Zvyagin SA, Smirnov D, Ozarowski A, Telser J (2010) J Am Chem Soc 132:5241–5253. doi:10.1021/ja910766w

    Google Scholar 

  72. Atanasov M, Neese F, Telser J, Krzystek J, Ozarowski A, Larrabee JA, Swenson DC (2014) (in progress)

  73. Titiš J, Boča R (2011) Inorg Chem 50:11838–11845. doi:10.1021/ic202108j

  74. Tomkowicz Z, Ostrovsky S, Foro S, Calvo-Perez V, Haase W (2012) Inorg Chem 51:6046–6055. doi:10.1021/ic202529p

    Google Scholar 

  75. Hadler KS, Mitić N, Yip SH-C, Gahan LR, Ollis DL, Schenk G, Larrabee JA (2010) Inorg Chem 49:2727–2734. doi:10.1021/ic901950c

    Google Scholar 

  76. Larrabee JA, Johnson WR, Volwiler AS (2009) Inorg Chem 48:8822–8829. doi:10.1021/ic901000d

    Google Scholar 

  77. Watterson SJ, Mitra S, Swierczek SI, Bennett B, Holz RC (2008) Biochemistry 47:11885–11893. doi:10.1021/bi801499g

    Google Scholar 

  78. Larrabee JA, Leung CH, Moore RL, Thamrong-nawasawat T, Wessler BSH (2004) J Am Chem Soc 126:12316–12324. doi:10.1021/ja0485006

    Google Scholar 

  79. Šebová M, Boča R, Dlháň Ľ, Nemec I, Papánková B, Pavlik J, Fuess H (2012) Inorg Chim Acta 383:143–151. doi:10.1016/j.ica.2011.10.073

    Google Scholar 

  80. Barra A-L, Døssing A, Morsing T, Vibenholt J (2011) Inorg Chim Acta 373:266–269. doi:10.1016/j.ica.2011.02.024

    Google Scholar 

  81. Horitani M, Yashiro H, Hagiwara M, Hori H (2008) J Inorg Biochem 102:781–788. doi:10.1016/j.jinorgbio.2007.11.015

    Google Scholar 

  82. Hori H, Yashiro H, Ninomiya K, Horitani M, Kida T, Hagiwara M (2011) J Inorg Biochem 105:1596–1602. doi:10.1016/j.jinorgbio.2011.09.007

    Google Scholar 

  83. Krzystek J, Telser J (2003) J Magn Reson 162:454–465. doi:10.1016/S1090-7807(03)00042-9

    Google Scholar 

  84. Krzystek J, Pardi LA, Brunel L-C, Goldberg DP, Hoffman BM, Licoccia S, Telser J (2002) Spectrochim Acta A 58:1113–1127. doi:10.1016/S1386-1425(01)00701-6

    Google Scholar 

  85. Edwards NY, Eikey RA, Loring MI, Abu-Omar MM (2005) Inorg Chem 44:3700–3708. doi:10.1021/ic0484506

    Google Scholar 

  86. Desrochers PJ, Telser J, Zvyagin SA, Ozarowski A, Krzystek J, Vicic DA (2006) Inorg Chem 45:8930–8941. doi:10.1021/ic060843c

    Google Scholar 

  87. Andino JG, Kilgore UJ, Pink M, Ozarowski A, Krzystek J, Telser J, Baik M-H, Mindiola DJ (2010) Chem Sci 1:351–356. doi:10.1039/c0sc00201a

  88. Beinert H (2000) J Biol Inorg Chem 5:2–15. doi:10.1007/s007750050002

    Google Scholar 

  89. Knapp MJ, Krzystek J, Brunel L-C, Hendrickson DN (2000) Inorg Chem 39:281–288. doi:10.1021/ic9910054

    Google Scholar 

  90. Barra AL, Hassan AK, Janoschka A, Schmidt CL, Schünemann V (2006) Appl Magn Reson 30:385–397. doi:10.1007/BF03166208

    Google Scholar 

  91. Costas M, Mehn MP, Jensen MP, Que L Jr (2004) Chem Rev 104:939–986. doi:10.1021/cr020628n

    Google Scholar 

  92. England J, Martinho M, Farquhar ER, Frisch JR, Bominaar EL, Münck E, Que L Jr (2009) Angew Chem Int Ed 48:3622–3626. doi:10.1002/anie.200900863

    Google Scholar 

  93. Vallejo J, Pascual-Álvarez A, Cano J, Castro I, Julve M, Lloret F, Krzystek J, Munno GD, Armentano D, Wernsdorfer W, Ruiz-García R, Pardo E (2013) Angew Chem Int Ed 52:14075–14079. doi:10.1002/anie.201308047

    Google Scholar 

  94. Duboc C, Ganyushin D, Sivalingam K, Collomb M-N, Neese F (2010) J Phys Chem A 114:10750–10758. doi:10.1021/jp107823s

    Google Scholar 

  95. Cotruvo JA Jr, Stubbe J (2011) Biochemistry 50:1672–1681. doi:10.1021/bi101881d

    Google Scholar 

  96. Cotruvo JA Jr, Stich TA, Britt RD, Stubbe J (2013) J Am Chem Soc 135:4027–4039. doi:10.1021/ja312457t

    Google Scholar 

  97. Tabares LC, Cortez N, Un S (2007) Biochemistry 46:9320–9327. doi:10.1021/bi700438j

    Google Scholar 

  98. Tabares LC, Cortez N, Agalidis I, Un S (2005) J Am Chem Soc 127:6039–6047. doi:10.1021/ja047007r

    Google Scholar 

  99. Un S, Tabares LC, Cortez N, Hiraoka BY, Yamakura F (2004) J Am Chem Soc 126:2720–2726. doi:10.1021/ja036503x

    Google Scholar 

  100. Un S, Dorlet P, Voyard G, Tabares LC, Cortez N (2001) J Am Chem Soc 123:10123–10124. doi:10.1021/ja016258m

    Google Scholar 

  101. Tabares LC, Gätjens J, Hureau C, Burrell MR, Bowater L, Pecoraro VL, Bornemann S, Un S (2009) J Phys Chem B 113:9016–9025. doi:10.1021/jp9021807

    Google Scholar 

  102. Angerhofer A, Moomaw EW, García-Rubio I, Ozarowski A, Krzystek J, Weber RT, Richards NGJ (2007) J Phys Chem B 111:5043–5046. doi:10.1021/jp0715326

    Google Scholar 

  103. Moomaw EW, Angerhofer A, Moussatche P, Ozarowski A, García-Rubio I, Richards NGJ (2009) Biochemistry 48:6116–6125. doi:10.1021/bi801856k

    Google Scholar 

  104. Mathies G, Blok H, Disselhorst JAJM, Gast P, Meer Hvd, Miedema DM, Almeida RM, Moura JJG, Hagen WR, Groenen EJJ (2011) J Magn Reson 210:126–132. doi:10.1016/j.jmr.2011.03.009

  105. Biaso F, Duboc C, Barbara B, Serratrice G, Thomas F, Charapoff D, Béguin C (2005) Eur J Inorg Chem 467–478. doi:10.1002/ejic.200400414

  106. van Kan PJM, van der Horst E, Reijerse EJ, van Bentum PJM, Hagen WR (1998) J Chem Soc Faraday Trans 94:2975–2978. doi:10.1039/A803058H

    Google Scholar 

  107. Nehrkorn J, Martins BM, Holldack K, Stoll S, Dobbek H, Bittl R, Schnegg A (2013) Mol Phys 111:2696–2707. doi:10.1080/00268976.2013.809806

    Google Scholar 

  108. Brackett GC, Richards PL, Caughey WS (1971) J Chem Phys 54:4383–4401. doi:10.1063/1.1674688

    Google Scholar 

  109. Solomon EI, Sarangi R, Woertink JS, Augustine AJ, Yoon J, Ghosh S (2007) Acc Chem Res 40:581–591. doi:10.1021/ar600060t

    Google Scholar 

  110. Balasubramanian R, Rosenzweig AC (2007) Acc Chem Res 40:573–580. doi:10.1021/ar700004s

    Google Scholar 

  111. Reger DL, Pascui AE, Smith MD, Jezierska J, Ozarowski A (2012) Inorg Chem 51:11820–11836. doi:10.1021/ic301757g

    Google Scholar 

  112. Reger DL, Pascui AE, Smith MD, Jezierska J, Ozarowski A (2012) Inorg Chem 51:7966–7968. doi:10.1021/ic301321r

    Google Scholar 

  113. Reger DL, Debreczeni A, Smith MD, Jezierska J, Ozarowski A (2012) Inorg Chem 51:1068–1083. doi:10.1021/ic202198k

    Google Scholar 

  114. Ozarowski A, Szymańska IB, Muzioł T, Jezierska J (2009) J Am Chem Soc 131:10279–10292. doi:10.1021/ja902695y

    Google Scholar 

  115. Sharma RP, Saini A, Monga D, Venugopalan P, Jezierska J, Ozarowski A, Ferretti V (2014) New J Chem 38:437–447. doi:10.1039/C3NJ00736G

    Google Scholar 

  116. Cutsail GE III, Doan PE, Hoffman BM, Meyer J, Telser J (2012) J Biol Inorg Chem 17:1137–1150. doi:10.1007/s00775-012-0927-7

    Google Scholar 

  117. Smoukov SK, Quaroni L, Wang X, Doan PE, Hoffman BM, Que L Jr (2002) J Am Chem Soc 124:2595–2603. doi:10.1021/ja003169l

    Google Scholar 

  118. Smoukov SK, Kopp DA, Valentine AM, Davydov R, Lippard SJ, Hoffman BM (2002) J Am Chem Soc 124:2657–2663. doi:10.1021/ja010123z

    Google Scholar 

  119. Smoukov SK, Davydov RM, Doan PE, Sturgeon B, Kung I, Hoffman BM, Kurtz DMJ (2003) Biochemistry 42:6201–6208. doi:10.1021/bi0300027

    Google Scholar 

  120. Christianson DW (2005) Acc Chem Res 38:191–201. doi:10.1021/ar040183k

    Google Scholar 

  121. Ye S, Neese F (2012) J Chem Theory Comput 8:2344–2351. doi:10.1021/ct300237f

    Google Scholar 

  122. Mossin S, Weihe H, Barra A-L (2002) J Am Chem Soc 124:8764–8765. doi:10.1021/ja012574p

    Google Scholar 

  123. Ganyushin D, Neese F (2006) J Chem Phys 125:024103. doi:10.1063/1.2213976

    Google Scholar 

  124. Neese F (2006) J Biol Inorg Chem 11:702–711. doi:10.1007/s00775-006-0138-1

    Google Scholar 

  125. Atanasov M, Ganyushin D, Sivalingam K, Neese F (2012) In: Mingos DMP, Day P, Dahl JP (eds) Molecular electronic structures of transition metal complexes II. Springer, Berlin, pp 149–220

  126. Atanasov M, Ganyushin D, Pantazis DA, Sivalingam K, Neese F (2011) Inorg Chem 50:7460–7477. doi:10.1021/ic200196k

    Google Scholar 

  127. Ganyushin D, Neese F (2013) J Chem Phys 138:104113. doi:10.1063/1.4793736

    Google Scholar 

  128. Sandhoefer B, Kossmann S, Neese F (2013) J Chem Phys 138:104102. doi:10.1063/1.4792362

  129. Neese F (2012) Wiley Interdiscip Rev Comput Mol Sci 2:73–78. doi:10.1002/wcms.81

    Google Scholar 

  130. Neese F, Petrenko T, Ganyushin D, Olbrich G (2007) Coord Chem Rev 251:288–327. doi:10.1016/j.ccr.2006.05.019

    Google Scholar 

  131. Krzystek J, Telser J, Pardi LA, Goldberg DP, Hoffman BM, Brunel L-C (1999) Inorg Chem 38:6121–6129. doi:10.1021/ic9901970

    Google Scholar 

  132. McGarvey BR (1966) In: Carlin RL (ed) Transition metal chemistry. Marcel Dekker, New York, pp 89–201

  133. NHMFL (2014) Electron magnetic resonance (EMR) overview. NHMFL, Tallahassee. http://magnet.fsu.edu/usershub/scientificdivisions/emr/index.html. Accessed 20 Dec 2013

  134. Krzystek J, Ozarowski A, van Tol J, Liu J, Hill S (2012) EPR Newsl 22:12–14 (this is available from the authors upon request)

    Google Scholar 

  135. Weihe H (2003) SIM. University of Copenhagen, Copenhagen

  136. Stoll S (2013) EasySpin. University of Washington, Seattle

  137. Stoll S, Schweiger A (2006) J Magn Reson 178:42–55. doi:10.1016/j.jmr.2005.08.013

    Google Scholar 

  138. Hendrich M (2013) Spin Count. Carnegie-Mellon University, Pittsburgh

  139. Kirchner B, Wennmohs F, Ye S, Neese F (2007) Curr Opin Chem Biol 11:134–141. doi:10.1016/j.cbpa.2007.02.026

    Google Scholar 

Download references

Acknowledgments

The NHMFL is funded by the NSF through Cooperative Agreement DMR 1157490, the State of Florida, and the DOE. We thank Prof. Mahdi M. Abu-Omar and Dr. Scott Hicks, Purdue University, for the [Mn(tpfc)] sample, and Prof. Brian M. Hoffman and Dr. Judith A. Nocek, Northwestern University, for the met-Mb-F sample. The [TptBuNi(NCS)] and [TptBu,NpCoN3] samples originated with the late Dr. S. Trofimenko, University of Delaware. We thank Prof. Timothy A. Jackson, University of Kansas, for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua Telser.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 388 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Telser, J., Krzystek, J. & Ozarowski, A. High-frequency and high-field electron paramagnetic resonance (HFEPR): a new spectroscopic tool for bioinorganic chemistry. J Biol Inorg Chem 19, 297–318 (2014). https://doi.org/10.1007/s00775-013-1084-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-013-1084-3

Keywords

Navigation