Skip to main content
Log in

Characterisation and evaluation of paramagnetic fluorine labelled glycol chitosan conjugates for 19F and 1H magnetic resonance imaging

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Medium molecular weight glycol chitosan conjugates have been prepared, linked by an amide bond to paramagnetic Gd(III), Ho(III) and Dy(III) macrocyclic complexes in which a trifluoromethyl reporter group is located 6.5 Å from the paramagnetic centre. The faster relaxation of the observed nucleus allows modified pulse sequences to be used with shorter acquisition times. The polydisperse materials have been characterised by gel permeation chromatography, revealing an average molecular weight on the order of 13,800 (Gd), 14,600 (Dy) and 16,200 (Ho), consistent with the presence of 8.5, 9.5 and 13 complexes, respectively. The gadolinium conjugate was prepared for both a q = 1 monoamide tricarboxylate conjugate (r 1p 11.2 mM−1 s−1, 310 K, 1.4 T) and a q = 0 triphosphinate system, and conventional contrast-enhanced proton MRI studies at 7 T were undertaken in mice bearing an HT-29 or an HCT-116 colorectal tumour xenograft (17 μmol/kg). Enhanced contrast was observed following injection in the tail vein in tumour tissue, with uptake also evident in the liver and kidney with a tumour-to-liver ratio of 2:1 at 13 min, and large amounts in the kidney and bladder consistent with predominant renal clearance. Parallel experiments observing the 19F resonance in the holmium conjugate complex using a surface coil did not succeed owing to its high R 2 value (750 Hz, 7 T). However, the fluorine signal in the dysprosium triphosphinate chitosan conjugate [R 1/R 2 = 0.6 and R 1 = 145 Hz (7 T)] was sharper and could be observed in vivo at −65.7 ppm, following intravenous tail vein injection of a dose of 34 μmol/kg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

DO3A:

1,4,7-Tricarboxymethyl-1,4,7,10-tetraazacyclododecane

GPC:

Gel permeation chromatography

MRI:

Magnetic resonance imaging

MS:

Mass spectrometry

NMM:

N-Methylmorpholine

NMRD:

Nuclear magnetic relaxation dispersion

TBTU:

Tetramethyluronium tetrafluoroborate

PDI:

Polydispersity index

MRSI:

Magnetic resonance spectroscopic imaging

References

  1. Zhu X-H, Zhang N, Zhang Y, Ugurbil K, Chen W (2005) NMR Biomed 18:83

    Article  CAS  PubMed  Google Scholar 

  2. Yu J-X, Hallac RR, Chiguru S, Mason RP (2013) Prog Nucl Magn Reson Spectrosc 70:25–49

    Article  CAS  PubMed  Google Scholar 

  3. Kitamura M, Suzuki T, Abe R, Ueno T, Aoki S (2011) Inorg Chem 50:11568–11580

    Article  CAS  PubMed  Google Scholar 

  4. Ruiz-Cabello J, Barnett BP, Bottomley PA, Bulte JWM (2011) NMR Biomed 24:114

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Flögel U, Ding Z, Hardung H, Jander S, Reichmann G, Jacoby C, Schubert R, Schrader J (2008) Circulation 1118:40

    Google Scholar 

  6. Kenwright AM, Kuprov I, De Luca E, Parker D, Pandya SU, Senanayake PK, Smith DG (2008) Chem Commun 2514–2515

  7. Senanayake PK, Kenwright AM, Parker D, van der Hoorn, SK (2007) Chem Commun 2923–2294

  8. Chalmers KH, De Luca E, Hogg NHM, Kenwright AM, Kuprov I, Parker D, Botta M, Wilson JI, Blamire AM (2010) Chem Eur J 16:134–148

    Article  CAS  PubMed  Google Scholar 

  9. Chalmers KH, Botta M, Parker D (2011) Dalton Trans 40:904–913

    Article  CAS  PubMed  Google Scholar 

  10. Harvey P, Chalmers KH, De Luca E, Mishra A, Parker D (2012) Chem Eur J 18:8748–8757

    Article  CAS  PubMed  Google Scholar 

  11. Harvey P, Kuprov I, Parker D (2012) Eur J Inorg Chem 2015–2022

  12. Yu J-X, Kodibagkar VD, Liu L, Zhang Z, Liu L, Magnusson J, Liu Y (2013) Chem Sci 4:2132–2137

    Article  CAS  Google Scholar 

  13. Schmid F, Holtke C, Parker D, Faber C (2013) Magn Reson Med 69:1056–1062

    Article  CAS  PubMed  Google Scholar 

  14. Chalmers KH, Kenwright AM, Parker D, Blamire AM (2011) Magn Reson Med 66:931–936

    Article  CAS  PubMed  Google Scholar 

  15. Harrison A, Walker CA, Pereira KA, Parker D, Royle L, Pulukoddy PK, Norman TJ (1993) Magn Reson Imaging 11:761–770

    Article  CAS  PubMed  Google Scholar 

  16. Pulukoddy PK, Norman TJ, Parker D, Royle L, Broan CJ (1993) J Chem Soc Perkin Trans 2 605–620

    Google Scholar 

  17. Harrison A, Walker C, Cox JPL, Jankowski KJ, Parker D, Sansom J, Eaton MAW, Beeley NRA, Millican AT (1991) Nucl Med Biol 18:469–476

    CAS  Google Scholar 

  18. Aime S, Botta M, Parker D, Williams JAG (1995) Dalton Trans 2259–2266

  19. Funk AM, Fries PH, Harvey P, Kenwright AM, Parker D (2013) J Phys Chem A 117:905–917

    Article  CAS  PubMed  Google Scholar 

  20. Nam T, Park S, Lee SY, Park K, Choi K, Song IC, Han MH, Leary JJ, Yuk SA, Kwon IC, Kim K, Jeong SY (2010) Bioconjug Chem 21:578–582

    Article  CAS  PubMed  Google Scholar 

  21. Son JY, Jang JS, Cho YW, Chung H, Park R-W, Kwon IC, Kim I-S, Park JY, Seo SB, Park CR, Jeong SY (2003) J Control Release 91:135–145

    Article  CAS  PubMed  Google Scholar 

  22. Lee SJ, Koo H, Lee D-E, Min S, Lee S, Chen X, Choi Y, Leary JF, Park K, Jeong SY, Kwon IC, Kim K, Choi K (2011) Biomaterials 32:4021–4029

    Article  CAS  PubMed  Google Scholar 

  23. Caravan P, Ellison JJ, McMurry TJ, Lauffer RB (1999) Chem Rev 99:2293

    Article  CAS  PubMed  Google Scholar 

  24. Swift TJ, Connick RE (1962) J Chem Phys 37:707

    Article  Google Scholar 

  25. Lipari G, Szabo A (1982) J Am Chem Soc 104:4546

    Article  CAS  Google Scholar 

  26. Lipari G, Szabo A (1982) J Am Chem Soc 104:4559

    Article  CAS  Google Scholar 

  27. Zhang Z, Greenfield MT, Spiller M, McMurry TJ, Lauffer RB, Caravan P (2005) Angew Chem Int Ed 44:6766–6769

    Article  CAS  Google Scholar 

  28. Botta M, Tei L (2012) Eur J Inorg Chem 1945–1960

  29. Harvey P, Blamire AM, Wilson JI, Finney K-LNA, Funk AM, Senanayake, PK, Parker D (2013) Chem Sci (accepted)

Download references

Acknowledgments

We thank the Engineering and Physical Sciences Research Council and Cancer Research UK for support, Andrei Batsanov for determination of the X-ray crystal structure and Alan Kenwright for certain NMR relaxation experiments in vitro.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Parker.

Additional information

Responsible Editor: Valerie C. Pierre.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (PDF 164 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Luca, E., Harvey, P., Chalmers, K.H. et al. Characterisation and evaluation of paramagnetic fluorine labelled glycol chitosan conjugates for 19F and 1H magnetic resonance imaging. J Biol Inorg Chem 19, 215–227 (2014). https://doi.org/10.1007/s00775-013-1028-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-013-1028-y

Keywords

Navigation