Skip to main content
Log in

Thermodynamics and molecular dynamics simulations of calcium binding to the regulatory site of human cardiac troponin C: evidence for communication with the structural calcium binding sites

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Human cardiac troponin C (HcTnC), a member of the EF hand family of proteins, is a calcium sensor responsible for initiating contraction of the myocardium. Ca2+ binding to the regulatory domain induces a slight change in HcTnC conformation which modifies subsequent interactions in the troponin–tropomyosin–actin complex. Herein, we report a calorimetric study of Ca2+ binding to HcTnC. Isotherms obtained at 25 °C (10 mM 2-morpholinoethanesulfonic acid, 50 mM KCl, pH 7.0) provided thermodynamic parameters for Ca2+ binding to both the high-affinity and the low-affinity domain of HcTnC. Ca2+ binding to the N-domain was shown to be endothermic in 2-morpholinoethanesulfonic acid buffer and allowed us to extract the thermodynamics of Ca2+ binding to the regulatory domain. This pattern stems from changes that occur at the Ca2+ site rather than structural changes of the protein. Molecular dynamics simulations performed on apo and calcium-bound HcTnC1–89 support this claim. The values of the Gibbs free energy for Ca2+ binding to the N-domain in the full-length protein and to the isolated domain (HcTnC1–89) are similar; however, differences in the entropic and enthalpic contributions to the free energy provide supporting evidence for the cooperativity of the C-domain and the N-domain. Thermograms obtained at two additional temperatures (10 and 37 °C) revealed interesting trends in the enthalpies and entropies of binding for both thermodynamic events. This allowed the determination of the change in heat capacity (∆C p ) from a plot of ∆H verses temperature and may provide evidence for positive cooperativity of Ca2+ binding to the C-domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Schaub MC, Heizmann CW (2008) Biochem Biophys Res Commun 369:247–264

    Article  PubMed  CAS  Google Scholar 

  2. Gifford JL, Walsh MP, Vogel HJ (2007) Biochem J 405:199–221

    Article  PubMed  CAS  Google Scholar 

  3. Krebs J, Heizmann CW (2007) Calcium-binding proteins and the EF-hand principle. Elsevier, Amsterdam

  4. Grabarek Z (2006) J Mol Biol 359:509–525

    Article  PubMed  CAS  Google Scholar 

  5. Capozzi F, Casadei F, Luchinat C (2006) J Biol Inorg Chem 11:949–962

    Article  PubMed  CAS  Google Scholar 

  6. Bhattacharya S, Bunick CG, Chazin WJ (2004) Biochim Biophys Acta Mol Cell Res 1742:69–79

    Article  CAS  Google Scholar 

  7. Crouch TH, Klee CB (1980) Biochemistry 19:3692–3698

    Article  PubMed  CAS  Google Scholar 

  8. Teleman O, Drakenberg T, Forsen S, Thulin E (1983) Eur J Biochem 134:453–457

    Article  PubMed  CAS  Google Scholar 

  9. Pearlstone JR, Mccubbin WD, Kay CM, Sykes BD, Smillie LB (1992) Biochemistry 31:9703–9708

    Article  PubMed  CAS  Google Scholar 

  10. Linse S, Chazin WJ (1995) Protein Sci 4:1038–1044

    Article  PubMed  CAS  Google Scholar 

  11. Sia SK, Li MX, Spyracopoulos L, Gagne SM, Putkey JA, Sykes BD (1997) Biophys J 72:WP191–WP191

  12. Potter JD, Gergely J (1975) J Biol Chem 250:4628–4633

    PubMed  CAS  Google Scholar 

  13. Leavis PC, Kraft EL (1978) Arch Biochem Biophys 186:411–415

    Article  PubMed  CAS  Google Scholar 

  14. Johnson JD, Potter JD (1978) J Biol Chem 253:3775–3777

    PubMed  CAS  Google Scholar 

  15. Johnson JD, Collins JH, Potter JD (1978) J Biol Chem 253:6451–6458

    PubMed  CAS  Google Scholar 

  16. Johnson JD, Potter JD (1978) J Biol Chem 253:3775–3777

    PubMed  CAS  Google Scholar 

  17. Takahashi K (1976) Biochemistry 15:1171–1180

    Article  Google Scholar 

  18. Cheung JY, Tillotson DL, Yelamarty RV, Scaduto RC (1989) Am J Physiol 256:C1120–C1130

    PubMed  CAS  Google Scholar 

  19. Spyracopoulos L, Li MX, Sia SK, Gagne SM, Chandra M, Solaro RJ, Sykes BD (1997) Biochemistry 36:12138–12146

    Article  PubMed  CAS  Google Scholar 

  20. Gomes AV, Potter JD (2004) Mol Cell Biochem 263:99

    Article  PubMed  CAS  Google Scholar 

  21. Dweck D, Hus N, Potter JD (2008) J Biol Chem 283:33119–33128

    Article  PubMed  CAS  Google Scholar 

  22. Kimura A (2011) Circ J 75:1756–1765

    Article  PubMed  CAS  Google Scholar 

  23. Jacoby D, McKenna WJ (2012) Eur Heart J 33:163–296

    Article  Google Scholar 

  24. Frey N, Luedde M, Katus HA (2012) Nat Rev Cardiol 9:91–100

    Article  CAS  Google Scholar 

  25. Wilcox DE (2008) Inorg Chim Acta 361:857–867

    Article  CAS  Google Scholar 

  26. Grossoehme NE, Spuches AM, Wilcox DE (2010) J Biol Inorg Chem 15:1183–1191

    Article  PubMed  CAS  Google Scholar 

  27. Sacco C, Skowronsky RA, Gade S, Kenney AM, Spuches AM (2012) J Biol Inorg Chem 17:531–541

    Article  PubMed  CAS  Google Scholar 

  28. Kometani K, Yamada K (1983) Biochem Biophys Res Commun 114:162–167

    Article  PubMed  CAS  Google Scholar 

  29. Yamada K (1999) Mol Cell Biochem 190:39–45

    Article  PubMed  CAS  Google Scholar 

  30. Yamada K (2003) Adv Exp Med Biol 538:203–213

    Article  PubMed  CAS  Google Scholar 

  31. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  32. Toukmaji A, Sagui C, Board J, Darden T (2000) J Chem Phys 113:10913–10927

    Article  CAS  Google Scholar 

  33. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) J Chem Phys 103:8577–8593

    Article  CAS  Google Scholar 

  34. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  35. Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) J Comput Chem 26:1668–1688

    Article  PubMed  CAS  Google Scholar 

  36. Christensen T, Gooden DM, Kung JE, Toone EJ (2003) J Am Chem Soc 125:7357–7366

    Article  PubMed  CAS  Google Scholar 

  37. Martell AE, Smith RM (2004) NIST Critically Selected Stability Constants of Metal Complexes Database, version 8.0. National Institute of Standards and Technology, Gaithersburg

  38. Yamada K (1978) Biochim Biophys Acta Protein Struct 535:342–347

    Article  CAS  Google Scholar 

  39. Li MX, Chandra M, Pearlstone JR, Racher KI, Trigogonzalez G, Borgford T, Kay CM, Smillie LB (1994) Biochemistry 33:917–925

    Article  PubMed  CAS  Google Scholar 

  40. Tanokura M, Yamada K (1993) J Biol Chem 268:7090–7092

    PubMed  CAS  Google Scholar 

  41. Tanokura M, Yamada K (1984) J Biochem 95:643–649

    PubMed  CAS  Google Scholar 

  42. Tanokura M, Yamada K (1987) Biochemistry 26:7668–7674

    Article  PubMed  CAS  Google Scholar 

  43. Imaizumi M, Tanokura M, Yamada K (1987) J Biol Chem 262:7963–7966

    PubMed  CAS  Google Scholar 

  44. Tanokura M, Yamada K (1983) J Biochem 94:607–609

    PubMed  CAS  Google Scholar 

  45. Gilli R, Lafitte D, Lopez C, Kilhoffer M-, Makarov A, Briand C, Haiech J (1998) Biochemistry 37:5450–5456

    Article  PubMed  CAS  Google Scholar 

  46. Smith D (1977) J Chem Educ 54(19):540–542

    Article  CAS  Google Scholar 

  47. Sturtevant JM (1977) Proc Natl Acad Sci USA 74:2236–2240

    Article  PubMed  CAS  Google Scholar 

  48. Varughese JF, Chalovich JM, Li Y (2010) J Biomol Struct Dyn 28:159–173

    Article  PubMed  CAS  Google Scholar 

  49. Varughese JF, Li Y (2011) J Biomol Struct Dyn 29:123–135

    Article  CAS  Google Scholar 

  50. Varughese JF, Baxley T, Chalovich JM, Li Y (2011) J Phys Chem B 115:2392–2400

    Article  PubMed  CAS  Google Scholar 

  51. Wang JM, Morin P, Wang W, Kollman PA (2001) J Am Chem Soc 123:5221–5230

    Article  PubMed  CAS  Google Scholar 

  52. Wang W, Kollman PA (2000) J Mol Biol 303:567–582

    Article  PubMed  CAS  Google Scholar 

  53. Kollman PA, Massova I, Reyes C, Kuhn B, Huo SH, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TE (2000) Acc Chem Res 33:889–897

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Nick Grossoehme, Dean Wilcox, Andrew Morehead, and Colin Burns for their useful comments and advice. We also give special thanks to Jason King and the Toone laboratory for allowing us to use their calorimeter when ours was being repaired. We thank East Carolina University for the start-up funds for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne M. Spuches.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 192 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skowronsky, R.A., Schroeter, M., Baxley, T. et al. Thermodynamics and molecular dynamics simulations of calcium binding to the regulatory site of human cardiac troponin C: evidence for communication with the structural calcium binding sites. J Biol Inorg Chem 18, 49–58 (2013). https://doi.org/10.1007/s00775-012-0948-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-012-0948-2

Keywords

Navigation