Skip to main content

Advertisement

Log in

Natural iron isotopic composition of blood is an indicator of dietary iron absorption efficiency in humans

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Persistent impairments in the regulation of intestinal iron absorption result in iron deficiency or iron accumulation in the long term. Diagnosis remains difficult unless pathological symptoms develop as iron absorption varies strongly between meals and days. Variations in the natural iron isotopic composition of whole blood have recently been suggested as a novel parameter to assess long-term differences in intestinal absorption efficiency between individuals. In this study, baseline blood samples collected in two previous conventional iron absorption studies in Swiss and Thai women using stable isotope tracers were reanalyzed by multicollector inductively coupled plasma mass spectrometry. The natural iron isotopic compositions obtained were compared with fractional absorption from the test meals observed in these earlier trials. Correlations of natural blood iron isotopic composition and fractional absorption from the test meals were found to be highly significant in both cohorts (for Swiss women, r = 0.40, P = 0.01, n = 38; for Thai women, r = 0.57, P < 0.01, n = 24), with the blood of both ethnicities clearly differing in iron isotopic composition (P < 0.001). Combining the findings of this study and those of recent animal and human studies confirms that blood iron isotopic patterns may serve as a novel compound biomarker of iron metabolism to assess impairments in regulation of intestinal iron absorption in individuals or population groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BMI:

Body mass index

CRP:

C-reactive protein

Hb:

Hemoglobin

IMB:

Instrumental mass bias

IRMM:

Institute of Reference Materials and Measurements (EU)

MC-ICP-MS:

Multi-collector inductively coupled plasma mass spectrometry

PFA:

Perfluoroalkoxy

SIS:

Stable introduction system

TIMS:

Thermal ionization mass spectrometry

References

  1. Miret S, Simpson RJ, McKie AT (2003) Annu Rev Nutr 23:283–301

    Article  PubMed  CAS  Google Scholar 

  2. Nemeth E, Tuttle MS, Powelson J et al (2004) Science 306:2090–2093

    Article  PubMed  CAS  Google Scholar 

  3. WHO (2002) Midwifery 19:72–73

    Google Scholar 

  4. Bothwell TH (1994) In: Bothwell TH, Charlton RW, Cook JD, Finch CA (eds) Iron metabolism in man. Blackwell, Oxford, pp 56–62

    Google Scholar 

  5. Skikne BS, Baynes RD (1994) In: Brock JH, Halliday JW, Pippard MJ, Powell LW (eds) Iron metabolism in health and disease. Saunders, London, pp 151–187

    Google Scholar 

  6. Lynch SR (1995) Nutr Rev 53:255–260

    Article  PubMed  CAS  Google Scholar 

  7. Beutler E (2006) Annu Rev Med 57:331–347

    Article  PubMed  CAS  Google Scholar 

  8. Powell LW, Jazwinska E, Halliday JW (1994) In: Brock JH, Halliday JW, Pippard MJ, Powell LW (eds) Iron metabolism in health and disease. Saunders, London, pp 254–257

    Google Scholar 

  9. Walczyk T, Davidsson L, Zavaleta N, Hurrell RF (1997) Fresenius J Anal Chem 359:445–449

    Article  CAS  Google Scholar 

  10. Cook JD (1979) In: Bothwell TH, Charlton RW, Cook JD, Finch CA (eds) Iron metabolism in man. Blackwell, Oxford, pp 427–429

    Google Scholar 

  11. Walczyk T, von Blanckenburg F (2002) Science 295:2065–2066

    Article  PubMed  CAS  Google Scholar 

  12. Walczyk T, von Blanckenburg F (2005) Int J Mass Spectrom 242:117–134

    Article  CAS  Google Scholar 

  13. Hotz K, Krayenbuehl PA, Walczyk T (2012) J Biol Inorg Chem 17:301–309

    Article  PubMed  CAS  Google Scholar 

  14. Hotz K, Augsburger H, Walczyk T (2011) J Anal At Spectrom 26:1347–1353

    Article  CAS  Google Scholar 

  15. Ohno T, Shinohara A, Kohge I, Chiba M, Hirata T (2004) Anal Sci 20:617–621

    Article  PubMed  CAS  Google Scholar 

  16. Taylor PDP, Maeck R, Debievre P (1992) Int J Mass Spectrom Ion Process 121:111–125

    Article  CAS  Google Scholar 

  17. Albarede F, Beard B (2004) Rev Miner Geochem 55:113–152

    Article  CAS  Google Scholar 

  18. Schauble EA (2004) Rev Miner Geochem 55:65–111

    Article  CAS  Google Scholar 

  19. Young ED, Galy A, Nagahara H (2002) Geochim Cosmochim Acta 66:1095–1104

    Article  CAS  Google Scholar 

  20. Rodushkin I, Stenberg A, Andren H, Malinovsky D, Baxter DC (2004) Anal Chem 76:2148–2151

    Article  PubMed  CAS  Google Scholar 

  21. Tachibana S, Nagahara H, Ozawa K, Yamada M (2007) Meteor Planet Sci 42:A146

    Google Scholar 

  22. Walczyk T, Kastenmayer P, Storcksdieck S, Zeder C, Grathwohl D, Hurrell R (2012) Eur J Nutr (in press)

  23. Tuntipopipat S, Judprasong K, Zeder C et al (2006) J Nutr 136:2970–2974

    PubMed  CAS  Google Scholar 

  24. Schoenberg R, von Blanckenburg F (2005) Int J Mass Spectrom 242:257–272

    Article  CAS  Google Scholar 

  25. Weyer S, Schwieters J (2003) Int J Mass Spectrom 226:355–368

    Article  CAS  Google Scholar 

  26. De Laeter JR, Bohlke JK, De Bievre P et al (2003) Pure Appl Chem 75:683–800

    Article  Google Scholar 

  27. Kumar S, Gupta S, Mangalik VS (1959) Indian J Med Res 47:273–279

    PubMed  CAS  Google Scholar 

  28. Lynch S (2007) Int J Vitam Nutr Res 77:217–223

    Article  PubMed  CAS  Google Scholar 

  29. Manis JG, Schachter D (1962) Am J Physiol 203:73

    CAS  Google Scholar 

  30. Johnson CM, Skulan JL, Beard BL, Sun H, Nealson KH, Braterman PS (2002) Earth Planet Sci Lett 195:141–153

    Article  CAS  Google Scholar 

  31. Shayeghi M, Latunde-Dada GO, Oakhill JS et al (2005) Cell 122:789–801

    Article  PubMed  CAS  Google Scholar 

  32. Finch C (1994) Blood 84:1697–1702

    PubMed  CAS  Google Scholar 

  33. Cook JD, Flowers CH, Skikne BS (2003) FASEB J 17:A1086

    Google Scholar 

  34. Lipschitz DA, Cook JD, Finch CA (1974) N Engl J Med 290:1213–1216

    Article  PubMed  CAS  Google Scholar 

  35. Van Heghe L, Engström E, Rodushkin I, Cloquet C, Vanhaecke F (2012) J Anal At Spectrom 27:1327–1334

    Article  Google Scholar 

  36. Perry GS, Byers T, Yip R, Margen S (1992) J Nutr 122:1417–1424

    PubMed  CAS  Google Scholar 

  37. Johnson-Spear MA, Yip R (1994) Am J Clin Nutr 60:117–121

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank R.F. Hurrell (ETH Zurich, Switzerland) for helpful discussions and for providing the laboratory infrastructure, C. Zeder (ETH Zurich, Switzerland), H. Bars, C. Bouman, and M. Deerberg (Thermo Fisher Scientific, Bremen, Germany) for technical support, and M.R. Eugster (ETH Zurich, Switzerland) for critical reading of the manuscript. The authors of the original absorption studies are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Walczyk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hotz, K., Walczyk, T. Natural iron isotopic composition of blood is an indicator of dietary iron absorption efficiency in humans. J Biol Inorg Chem 18, 1–7 (2013). https://doi.org/10.1007/s00775-012-0943-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-012-0943-7

Keywords

Navigation