Skip to main content
Log in

Electron transfer between periplasmic formate dehydrogenase and cytochromes c in Desulfovibrio desulfuricans ATCC 27774

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Desulfovibrio spp. are sulfate-reducing organisms characterized by having multiple periplasmic hydrogenases and formate dehydrogenases (FDHs). In contrast to enzymes in most bacteria, these enzymes do not reduce directly the quinone pool, but transfer electrons to soluble cytochromes c. Several studies have investigated electron transfer with hydrogenases, but comparatively less is known about FDHs. In this work we conducted experiments to assess potential electron transfer pathways resulting from formate oxidation in Desulfovibrio desulfuricans ATCC 27774. This organism can grow on sulfate and on nitrate, and contains a single soluble periplasmic FDH that includes a cytochrome c 3 like subunit (FdhABC3). It has also a unique cytochrome c composition, including two cytochromes c not yet isolated from other species, the split-Soret and nine-heme cytochromes, besides a tetraheme type I cytochrome c 3 (TpIc 3). The FDH activity and cytochrome composition of cells grown with lactate or formate and nitrate or sulfate were determined, and the electron transfer between FDH and these cytochromes was investigated. We studied also the reduction of the Dsr complex and of the monoheme cytochrome c-553, previously proposed to be the physiological partner of FDH. FdhABC3 was able to reduce the c-553, TpIc 3, and split-Soret cytochromes with a high rate. For comparison, the same experiments were performed with the [NiFe] hydrogenase from the same organism. This study shows that FdhABC3 can directly reduce the periplasmic cytochrome c network, feeding electrons into several alternative metabolic pathways, which explains the advantage of not having an associated membrane subunit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Muyzer G, Stams AJM (2008) Nat Rev Microbiol 6:441–454

    PubMed  CAS  Google Scholar 

  2. Rabus R, Hansen TA, Widdel F (2006) In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 659–768

    Chapter  Google Scholar 

  3. Pereira IAC, Ramos AR, Grein F, Marques MC, Da Silva SM, Venceslau SS (2011) Front Microbiol 2:69. doi:10.3389/fmicb.2011.00069

    PubMed  Google Scholar 

  4. Pereira PM, He Q, Valente FM, Xavier AV, Zhou J, Pereira IA, Louro RO (2008) Antonie Van Leeuwenhoek 93:347–362

    Article  PubMed  CAS  Google Scholar 

  5. Voordouw G (2002) J Bacteriol 184:5903–5911

    Article  PubMed  CAS  Google Scholar 

  6. Odom JM, Peck HD Jr (1981) FEMS Microbiol Lett 12:47–50

    Article  CAS  Google Scholar 

  7. Dolfing J, Jiang B, Henstra AM, Stams AJM, Plugge CM (2008) Appl Environ Microbiol 74:6126–6131. doi:10.1128/Aem.01428-08

    Article  PubMed  CAS  Google Scholar 

  8. Louro RO (2007) J Biol Inorg Chem 12:1–10

    Article  PubMed  CAS  Google Scholar 

  9. Matias PM, Pereira IAC, Soares CM, Carrondo MA (2005) Prog Biophys Mol Biol 89:292–329

    Article  PubMed  CAS  Google Scholar 

  10. ElAntak L, Dolla A, Durand M, Bianco P, Guerlesquin F (2005) Biochemistry 44:14828–14834

    Article  PubMed  CAS  Google Scholar 

  11. Sebban-Kreuzer C, Dolla A, Guerlesquin F (1998) Eur J Biochem 253:645–652

    Article  PubMed  CAS  Google Scholar 

  12. Riederer-Henderson MA, Peck HD (1986) Can J Microbiol 32:430–435

    Article  CAS  Google Scholar 

  13. Venceslau SS, Lino RR, Pereira IAC (2010) J Biol Chem 285:22772–22781. doi:10.1074/jbc.M110.124305

    Article  Google Scholar 

  14. Aubert C, Brugna M, Dolla A, Bruschi M, Giudici-Orticoni MT (2000) Biochim Biophys Acta 1476:85–92

    Article  PubMed  CAS  Google Scholar 

  15. Pereira IAC, Romão CV, Xavier AV, LeGall J, Teixeira M (1998) J Biol Inorg Chem 3:494–498

    Article  CAS  Google Scholar 

  16. Pereira PM, Teixeira M, Xavier AV, Louro RO, Pereira IA (2006) Biochemistry 45:10359–10367

    Article  PubMed  CAS  Google Scholar 

  17. Rossi M, Pollock WB, Reij MW, Keon RG, Fu R, Voordouw G (1993) J Bacteriol 175:4699–4711

    PubMed  CAS  Google Scholar 

  18. Saraiva LM, da Costa PN, Conte C, Xavier AV, LeGall J (2001) Biochim Biophys Acta 1520:63–70

    PubMed  CAS  Google Scholar 

  19. Costa C, Teixeira M, LeGall J, Moura JJG, Moura I (1997) J Biol Inorg Chem 2:198–208

    Article  CAS  Google Scholar 

  20. Heidelberg JF, Seshadri R, Haveman SA, Hemme CL, Paulsen IT, Kolonay JF, Eisen JA, Ward N, Methe B, Brinkac LM, Daugherty SC, Deboy RT, Dodson RJ, Durkin AS, Madupu R, Nelson WC, Sullivan SA, Fouts D, Haft DH, Selengut J, Peterson JD, Davidsen TM, Zafar N, Zhou LW, Radune D, Dimitrov G, Hance M, Tran K, Khouri H, Gill J, Utterback TR, Feldblyum TV, Wall JD, Voordouw G, Fraser CM (2004) Nat Biotechnol 22:554–559

    Article  PubMed  CAS  Google Scholar 

  21. Sebban C, Blanchard L, Bruschi M, Guerlesquin F (1995) FEMS Microbiol Lett 133:143–149

    Article  PubMed  CAS  Google Scholar 

  22. Liu MC, Costa C, Coutinho IB, Moura JJG, Moura I, Xavier AV, Legall J (1988) J Bacteriol 170:5545–5551

    PubMed  CAS  Google Scholar 

  23. Marietou A, Griffiths L, Cole J (2009) J Bacteriol 191:882–889. doi:10.1128/JB.01171-08

    Article  PubMed  CAS  Google Scholar 

  24. Devreese B, Costa C, Demol H, Papaefthymiou V, Moura I, Moura JJR, VanBeeumen J (1997) Eur J Biochem 248:445–451

    Article  PubMed  CAS  Google Scholar 

  25. Matias PM, Coelho R, Pereira IAC, Coelho AV, Thompson AW, Sieker LC, Le Gall J, Carrondo MA (1999) Struct Fold Des 7:119–130

    Article  CAS  Google Scholar 

  26. Fritz G, Griesshaber D, Seth O, Kroneck PM (2001) Biochemistry 40:1317–1324

    Article  PubMed  CAS  Google Scholar 

  27. Abreu IA, Lourenco AI, Xavier AV, LeGall J, Coelho AV, Matias PM, Pinto DM, Armenia Carrondo M, Teixeira M, Saraiva LM (2003) J Biol Inorg Chem 8:360–370

    PubMed  CAS  Google Scholar 

  28. Pires RH, Venceslau SS, Morais F, Teixeira M, Xavier AV, Pereira IAC (2006) Biochemistry 45:249–262. doi:10.1021/bi0515265

    Article  PubMed  CAS  Google Scholar 

  29. Stams AJ, Plugge CM (2009) Nat Rev Microbiol 7:568–577. doi:10.1038/nrmicro2166

    Article  PubMed  CAS  Google Scholar 

  30. da Silva SM, Pimentel C, Valente FMA, Rodrigues-Pousada C, Pereira IAC (2011) J Bacteriol 193:2909–2916

    Article  PubMed  Google Scholar 

  31. Le Gall J, Payne WJ, Chen L, Liu MY, Xavier AV (1994) Biochimie 76:655–665

    Article  PubMed  Google Scholar 

  32. Koller KB, Fred MH, Fauque G, LeGall J (1987) Biochem Biophys Res Commun 145:619–624

    Article  PubMed  CAS  Google Scholar 

  33. da Silva SM, Venceslau SS, Fernandes CLV, Valente FMA, Pereira IAC (2008) Antonie Van Leeuwenhoek 93:381–390

    Article  PubMed  CAS  Google Scholar 

  34. Berg BL, Li J, Heider J, Stewart V (1991) J Biol Chem 266:22380–22385

    PubMed  CAS  Google Scholar 

  35. Dolla A, Fourniera M, Dermouna Z (2006) J Biotechnol 126:87–100

    Article  PubMed  CAS  Google Scholar 

  36. Lamrabet O, Pieulle L, Aubert C, Mouhamar F, Stocker P, Dolla A, Brasseur G (2011) Microbiology. doi:10.1099/mic.0.049171-0

    PubMed  Google Scholar 

  37. Lobo SA, Almeida CC, Carita JN, Teixeira M, Saraiva LM (2008) Biochim Biophys Acta 1777:1528–1534. doi:10.1016/j.bbabio.2008.09.007

    Article  PubMed  CAS  Google Scholar 

  38. Dias JM, Than ME, Humm A, Huber R, Bourenkov GP, Bartunik HD, Bursakov S, Calvete J, Caldeira J, Carneiro C, Moura JJG, Moura I, Romão MJ (1999) Structure 7:65–79

    Article  PubMed  CAS  Google Scholar 

  39. Marietou A, Richardson D, Cole J, Mohan S (2005) FEMS Microbiol Lett 248:217–225. doi:10.1016/j.femsle.2005.05.042

    Article  PubMed  CAS  Google Scholar 

  40. Oliveira TF, Vonrhein C, Matias PM, Venceslau SS, Pereira IA, Archer M (2008) J Biol Chem 283:34141–34149. doi:10.1074/jbc.M805643200

    Article  PubMed  CAS  Google Scholar 

  41. Valente FM, Saraiva LM, LeGall J, Xavier AV, Teixeira M, Pereira IA (2001) ChemBioChem 2:895–905. doi:10.1002/1439-7633(20011203)2:12<895::AID-CBIC895>3.0.CO;2-V

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Sofia S. Venceslau for providing the Dsr complex. This work was supported by research grants PTDC/QUI-BIQ/100591/2008 funded by Fundação para a Ciência e Tecnologia (FCT, MCES, Portugal) and the FEDER program. S.M.S was supported by FCT PhD fellowship SFRH/BD/24312/2005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inês A. Cardoso Pereira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Silva, S.M., Pacheco, I. & Pereira, I.A.C. Electron transfer between periplasmic formate dehydrogenase and cytochromes c in Desulfovibrio desulfuricans ATCC 27774. J Biol Inorg Chem 17, 831–838 (2012). https://doi.org/10.1007/s00775-012-0900-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-012-0900-5

Keywords

Navigation