Skip to main content
Log in

Gadolinium exposure disrupts iron homeostasis in cultured cells

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Human exposure to gadolinium-based contrast agents can be complicated by nephrogenic systemic fibrosis (NSF). Demonstration of significant quantities of insoluble gadolinium in the skin of NSF patients suggested transmetallation as a mechanism of toxicity of this injury. An alternative pathway for the biological effect of gadolinium is a disruption of iron homeostasis. We tested the postulate that cell exposure to gadolinium increases iron uptake to disrupt intracellular metal homeostasis and impact inflammatory events. Alveolar macrophages, THP1 cells, NHBE cells, and BEAS-2B cells all demonstrated a capacity to import gadolinium from both GdCl3 and Omniscan. All four cell types similarly imported iron following exposure to ferric ammonium citrate (FAC). Exposure of all cell types to gadolinium and iron resulted in increased iron import relative to cell concentrations following incubation with FAC alone. To analyze for further evidence of changes in iron homeostasis, cell ferritin concentration was determined. Relative to incubation with FAC alone, co-incubation of BEAS-2B cells with gadolinium and FAC resulted in significant increases in ferritin level. Finally, potential effects of gadolinium uptake and associated changes in iron homeostasis on the inflammatory response were evaluated by measuring IL-8. Co-incubation of BEAS-2B cells with both gadolinium and iron resulted in diminished release of IL-8 relative to levels of the cytokine following incubation with gadolinium alone. We conclude that gadolinium impacts cell iron homeostasis to change import and storage of the metal and biological effects of exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BEGM:

Bronchial epithelial growth medium

FAC:

Ferric ammonium citrate

FCS:

Fetal calf serum

HBSS:

Hank’s balanced salt solution

ICPOES:

Inductively coupled plasma optical emission spectroscopy

IRP1:

Iron regulatory protein 1

KGM:

Keritinocyte growth medium

NSF:

Nephrogenic systemic fibrosis

References

  1. Grobner T, Prischl FC (2008) Semin Dial 21:135–139. doi:10.1111/j.1525-139X.2007.00406.x

    Article  PubMed  Google Scholar 

  2. Marckmann P, Skov L, Rossen K, Dupont A, Damholt MB, Heaf JG, Thomsen HS (2006) J Am Soc Nephrol 17:2359–2362. doi:10.1681/ASN.2006060601

    Article  PubMed  Google Scholar 

  3. Graziani G, Montanelli A, Brambilla S, Balzarini L (2009) J Nephrol 22:203–207

    PubMed  Google Scholar 

  4. Cowper SE, Rabach M, Girardi M (2008) Eur J Radiol 66:191–199. doi:10.1016/j.ejrad.2008.01.016

    Article  PubMed  Google Scholar 

  5. Marckmann P, Nielsen AH, Sloth JJ (2008) Nephrol Dial Transplant 23:3280–3282. doi:10.1093/ndt/gfn217

    Article  CAS  Google Scholar 

  6. Marckmann P, Skov L, Rossen K, Heaf JG, Thomsen HS (2007) Nephrol Dial Transplant 22:3174–3178. doi:10.1093/ndt/gfm261

    Article  CAS  Google Scholar 

  7. Morcos SK, Thomsen HS (2008) Nephron Clin Pract 110:c24–c31; discussion c32. doi:10.1159/000151228

  8. Schroeder JA, Weingart C, Coras B, Hausser I, Reinhold S, Mack M, Seybold V, Vogt T, Banas B, Hofstaedter F, Kramer BK (2008) Clin J Am Soc Nephrol 3:968–975. doi:10.2215/CJN.00100108

    Article  PubMed  Google Scholar 

  9. Boyd AS, Zic JA, Abraham JL (2007) J Am Acad Dermatol 56:27–30. doi:10.1016/j.jaad.2006.10.048

    Article  PubMed  Google Scholar 

  10. Swaminathan S, Shah SV (2007) J Am Soc Nephrol 18:2636–2643. doi:10.1681/ASN.2007060645

    Article  PubMed  CAS  Google Scholar 

  11. Todd DJ, Kagan A, Chibnik LB, Kay J (2007) Arthritis Rheum 56:3433–3441. doi:10.1002/art.22925

    Article  PubMed  Google Scholar 

  12. Thakral C, Abraham JL (2009) J Cutan Pathol 36:1244–1254. doi:10.1111/j.1600-0560.2009.01283.x

    Article  PubMed  Google Scholar 

  13. Swaminathan S, Horn TD, Pellowski D, Abul-Ezz S, Bornhorst JA, Viswamitra S, Shah SV (2007) N Engl J Med 357:720–722. doi:10.1056/NEJMc070248

    Article  PubMed  CAS  Google Scholar 

  14. Swaminathan S, High WA, Ranville J, Horn TD, Hiatt K, Thomas M, Brown HH, Shah SV (2008) Kidney Int 73:1413–1418. doi:10.1038/ki.2008.76

    Article  PubMed  CAS  Google Scholar 

  15. Chitambar CR, Sax D (1992) Blood 80:505–511

    PubMed  CAS  Google Scholar 

  16. Kim Y, Olivi L, Cheong JH, Maertens A, Bressler JP (2007) Toxicol Appl Pharmacol 220:349–356. doi:10.1016/j.taap.2007.02.001

    Article  PubMed  CAS  Google Scholar 

  17. Richardson DR (2001) Biochim Biophys Acta 1536:43–54

    PubMed  CAS  Google Scholar 

  18. Sturm B, Lassacher U, Ternes N, Jallitsch A, Goldenberg H, Scheiber-Mojdehkar B (2006) Biochimie 88:645–650. doi:10.1016/j.biochi.2005.12.001

    Article  PubMed  CAS  Google Scholar 

  19. Ghio AJ, Turi JL, Madden MC, Dailey LA, Richards JD, Stonehuerner JG, Morgan DL, Singleton S, Garrick LM, Garrick MD (2007) Am J Physiol Lung Cell Mol Physiol 292:L134–L143. doi:10.1152/ajplung.00534.2005

    Article  PubMed  CAS  Google Scholar 

  20. Tal TL, Simmons SO, Silbajoris R, Dailey L, Cho SH, Ramabhadran R, Linak W, Reed W, Bromberg PA, Samet JM (2010) Toxicol Appl Pharmacol 243:46–54. doi:10.1016/j.taap.2009.11.011

    Article  PubMed  CAS  Google Scholar 

  21. Wang X, Ghio AJ, Yang F, Dolan KG, Garrick MD, Piantadosi CA (2002) Am J Physiol Lung Cell Mol Physiol 282:L987–L995. doi:10.1152/ajplung.00253.2001

    PubMed  CAS  Google Scholar 

  22. Abraham JL, Thakral C, Skov L, Rossen K, Marckmann P (2008) Br J Dermatol 158:273–280. doi:10.1111/j.1365-2133.2007.08335.x

    Google Scholar 

  23. High WA, Ranville JF, Brown M, Punshon T, Lanzirotti A, Jackson BP (2010) J Am Acad Dermatol 62:38–44. doi:10.1016/j.jaad.2009.07.018

    Google Scholar 

  24. Khurana A, Greene JF Jr, High WA (2008) J Am Acad Dermatol 59:218–224. doi.10.1016/j.jaad.2008.04.010

    Google Scholar 

  25. Kicic A, Chua AC, Baker E (2001) Cancer 92:3093–3110. doi:10.1002/1097-0142(20011215)92:12<3093::AID-CNCR10107>3.0.CO;2-B

    Google Scholar 

  26. Kaplan J, Jordan I, Sturrock A (1991) J Biol Chem 266:2997–3004

    PubMed  CAS  Google Scholar 

  27. Balla G, Jacob HS, Balla J, Rosenberg M, Nath K, Apple F, Eaton JW, Vercellotti GM (1992) J Biol Chem 267:18148–18153

    PubMed  CAS  Google Scholar 

  28. Cozzi A, Santambrogio P, Levi S, Arosio P (1990) FEBS Lett 277:119–122

    Article  PubMed  CAS  Google Scholar 

  29. Haile DJ, Rouault TA, Harford JB, Kennedy MC, Blondin GA, Beinert H, Klausner RD (1992) Proc Natl Acad Sci USA 89:11735–11739

    Article  PubMed  CAS  Google Scholar 

  30. Leibold EA, Munro HN (1988) Proc Natl Acad Sci USA 85:2171–2175

    Article  PubMed  CAS  Google Scholar 

  31. Davies NP, Rahmanto YS, Chitambar CR, Richardson DR (2006) J Pharmacol Exp Ther 317:153–162. doi:10.1124/jpet.105.099044

    Google Scholar 

  32. Salnikow K, Li X, Lippmann M (2004) Toxicol Appl Pharmacol 196:258–265. doi:10.1016/j.taap.2004.01.003

    Google Scholar 

  33. Hansson GK (2005) N Engl J Med 352:1685–1695. doi:10.1056/NEJMra043430

    Google Scholar 

  34. Shah SV, Alam MG (2003) Am J Kidney Dis 41:S80–S83. doi:10.1053/ajkd.2003.50091

    Google Scholar 

  35. Yachie A, Niida Y, Wada T, Igarashi N, Kaneda H, Toma T, Ohta K, Kasahara Y, Koizumi S (1999) J Clin Invest 103:129–135.doi:10.1172/JCI4165

    Google Scholar 

  36. Prockop DJ (1971) Fed Proc 30:984–990

    PubMed  CAS  Google Scholar 

  37. Hutton JJ Jr, Trappel AL, Udenfriend S (1966) Biochem Biophys Res Commun 24:179–184

    Article  PubMed  CAS  Google Scholar 

  38. Pankalainen M, Kivirikko KI (1971) Biochim Biophys Acta 229:504–508

    PubMed  CAS  Google Scholar 

  39. Giri SN, Misra HP, Chandler DB, Chen ZL (1983) Exp Mol Pathol 39:317–326

    Article  PubMed  CAS  Google Scholar 

  40. Franklin TJ, Hales NJ, Johnstone D, Morris WB, Cunliffe CJ, Millest AJ, Hill GB (1991) Biochem Soc Trans 19:812–815

    PubMed  CAS  Google Scholar 

  41. Geesin JC, Hendricks LJ, Falkenstein PA, Gordon JS, Berg RA (1991) Arch Biochem Biophys 290:127–132

    Google Scholar 

  42. Hunt J, Richards RJ, Harwood R, Jacobs A (1979) Br J Haematol 41:69–76

    Article  PubMed  CAS  Google Scholar 

  43. Chandler DB, Barton JC, Briggs DD 3rd, Butler TW, Kennedy JI, Grizzle WE, Fulmer JD (1988) Am Rev Respir Dis 137:85–89

    PubMed  CAS  Google Scholar 

  44. Kennedy JI, Chandler DB, Jackson RM, Fulmer JD (1986) Chest 89:123S–125S

    PubMed  CAS  Google Scholar 

  45. Hope TA, Herfkens RJ, Denianke KS, Leboit PE, Hung YY, Weil E (2009) Invest Radiol. doi:10.1097/RLI.0b013e31819343ba

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Ghio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghio, A.J., Soukup, J.M., Dailey, L.A. et al. Gadolinium exposure disrupts iron homeostasis in cultured cells. J Biol Inorg Chem 16, 567–575 (2011). https://doi.org/10.1007/s00775-011-0757-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-011-0757-z

Keywords

Navigation