Skip to main content
Log in

Structural features promoting dioxygen production by Dechloromonas aromatica chlorite dismutase

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Chlorite dismutase (Cld) is a heme enzyme capable of rapidly and selectively decomposing chlorite (ClO2 ) to Cl and O2. The ability of Cld to promote O2 formation from ClO2 is unusual. Heme enzymes generally utilize ClO2 as an oxidant for reactions such as oxygen atom transfer to, or halogenation of, a second substrate. The X-ray crystal structure of Dechloromonas aromatica Cld co-crystallized with the substrate analogue nitrite (NO2 ) was determined to investigate features responsible for this novel reactivity. The enzyme active site contains a single b-type heme coordinated by a proximal histidine residue. Structural analysis identified a glutamate residue hydrogen-bonded to the heme proximal histidine that may stabilize reactive heme species. A solvent-exposed arginine residue likely gates substrate entry to a tightly confined distal pocket. On the basis of the proposed mechanism of Cld, initial reaction of ClO2 within the distal pocket generates hypochlorite (ClO) and a compound I intermediate. The sterically restrictive distal pocket probably facilitates the rapid rebound of ClO with compound I forming the Cl and O2 products. Common to other heme enzymes, Cld is inactivated after a finite number of turnovers, potentially via the observed formation of an off-pathway tryptophanyl radical species through electron migration to compound I. Three tryptophan residues of Cld have been identified as candidates for this off-pathway radical. Finally, a juxtaposition of hydrophobic residues between the distal pocket and the enzyme surface suggests O2 may have a preferential direction for exiting the active site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ASU:

Asymmetric unit

Cld:

Chlorite dismutase

MES:

2-(N-Morpholino)ethanesulfonate

NCS:

Noncrystallographic symmetry

PDB:

Protein Data Bank

References

  1. Liu S, Suflita JM (1993) Trends Biotechnol 11:344–352

    Article  CAS  PubMed  Google Scholar 

  2. Wackett LP (2004) J Biol Chem 279:41259–41262

    Article  CAS  PubMed  Google Scholar 

  3. Wackett LP, Hershberger CD (2001) Biocatalysis and biodegradation : microbial transformation of organic compounds. ASM Press, Washington

    Google Scholar 

  4. Oremland RS, Kulp TR, Blum JS, Hoeft SE, Baesman S, Miller LG, Stolz JF (2005) Science 308:1305–1308

    Article  CAS  PubMed  Google Scholar 

  5. Oremland RS, Stolz JF (2003) Science 300:939–944

    Article  CAS  PubMed  Google Scholar 

  6. Stolz JF, Basu P, Santini JM, Oremland RS (2006) Annu Rev Microbiol 60:107–130

    Article  CAS  PubMed  Google Scholar 

  7. Narasingarao P, Haggblom MM (2007) Appl Environ Microbiol 73:3519–3527

    Article  CAS  PubMed  Google Scholar 

  8. Kashiwa M, Nishimoto S, Takahashi K, Ike M, Fujita M (2000) J Biosci Bioeng 89:528–533

    Article  CAS  PubMed  Google Scholar 

  9. Coates JD, Achenbach LA (2004) Nat Rev Microbiol 2:569–580

    Article  CAS  PubMed  Google Scholar 

  10. Coates JD, Chakraborty R, Lack JG, O’Connor SM, Cole KA, Bender KS, Achenbach LA (2001) Nature 411:1039–1043

    Article  CAS  PubMed  Google Scholar 

  11. Maixner F, Wagner M, Lucker S, Pelletier E, Schmitz-Esser S, Hace K, Spieck E, Konrat R, Le Paslier D, Daims H (2008) Environ Microbiol 10:3043–3056

    Article  CAS  PubMed  Google Scholar 

  12. Danielsson H, Stenklo TK, Karlsson J, Nilsson T (2003) Appl Environ Microbiol 69:5585–5592

    Article  Google Scholar 

  13. Kengen SWM, Rikken GB, Hagen WR, Van Ginkel CG, Stams AJM (1999) J Bacteriol 181:6706–6711

    CAS  PubMed  Google Scholar 

  14. Okeke BC, Frankenberger WT Jr (2003) Microbiol Res 158:337–344

    Article  CAS  PubMed  Google Scholar 

  15. O’Connor SM, Coates JD (2002) Appl Environ Microbiol 68:3108–3113

    Article  PubMed  Google Scholar 

  16. Hewson WD, Hager LP (1979) J Biol Chem 254:3175–3181

    CAS  PubMed  Google Scholar 

  17. Jakopitsch C, Spalteholz H, Furtmuller PG, Arnhold J, Obinger C (2008) J Inorg Biochem 102:293–302

    Article  CAS  PubMed  Google Scholar 

  18. Shahangian S, Hager LP (1981) J Biol Chem 256:6034–6040

    CAS  PubMed  Google Scholar 

  19. Hollenberg PF, Rand-Meir T, Hager LP (1974) J Biol Chem 249:5816–5825

    CAS  PubMed  Google Scholar 

  20. George P (1953) J Biol Chem 201:413–426

    CAS  PubMed  Google Scholar 

  21. Streit BR, DuBois JL (2008) Biochemistry 47:5271–5280

    Article  CAS  PubMed  Google Scholar 

  22. Lee AQ, Streit, BR, Zdilla, M, Abu-Omar MA, DuBois JL (2008) Proc Natl Acad Sci USA

  23. De Geus DC, Thomassen EA, Hagedoorn PL, Pannu NS, van Duijn E, Abrahams JP (2009) J Mol Biol 387:192–206

    Article  PubMed  Google Scholar 

  24. Poulos TL (1993) Curr Opin Biotechnol 4:484–489

    Article  CAS  PubMed  Google Scholar 

  25. Everse J, Everse KE, Grisham MB (eds) (1990) Peroxidases in chemistry and biology, vol 1. CRC Press, Boca Raton

    Google Scholar 

  26. Jones P, Dunford HB (1977) J Theor Biol 69:457–470

    Article  CAS  PubMed  Google Scholar 

  27. Palcic MM, Dunford HB (1980) J Biol Chem 255:6128–6132

    CAS  PubMed  Google Scholar 

  28. Matsunaga I, Sumimoto T, Ayata M, Ogura H (2002) FEBS Lett 528:90–94

    Article  CAS  PubMed  Google Scholar 

  29. Schlichting I, Berendzen J, Chu K, Stock AM, Maves SA, Benson DE, Sweet RM, Ringe D, Petsko GA, Sligar SG (2000) Science 287:1615–1622

    Article  CAS  PubMed  Google Scholar 

  30. Savenkova MI, Kuo JM, Ortiz de Montellano PR (1998) Biochemistry 37:10828–10836

    Article  CAS  PubMed  Google Scholar 

  31. Newmyer SL, Ortiz de Montellano PR (1995) J Biol Chem 270:19430–19438

    Article  CAS  PubMed  Google Scholar 

  32. Hager LP, Doubek DL, Silverstein RM, Hargis JH, Martin JC (1972) J Am Chem Soc 94:4364–4366

    Article  CAS  PubMed  Google Scholar 

  33. Araiso T, Rutter R, Palcic MM, Hager LP, Dunford HB (1981) Can J Biochem 59:233–236

    Article  CAS  PubMed  Google Scholar 

  34. Bakkenist AR, de Boer JE, Plat H, Wever R (1980) Biochim Biophys Acta 613:337–348

    CAS  PubMed  Google Scholar 

  35. Ullrich R, Hofrichter M (2007) Cell Mol Life Sci 64:271–293

    Article  CAS  PubMed  Google Scholar 

  36. Toy PH, Newcomb M, Hager LP (1998) Chem Res Toxicol 11:816–823

    Article  CAS  PubMed  Google Scholar 

  37. Jankowski JJ, Kieber DJ, Mopper K (1999) Photochem Photobiol 70:319–328

    Article  CAS  Google Scholar 

  38. Goblirsch BR, Streit BR, DuBois JL, Wilmot CM (2009) Acta Crystallogr Sect F Struct Biol Cryst Commun 65:818–821

    Article  PubMed  Google Scholar 

  39. Collaborative Computational Project N (1994) Acta Crystallogr Sect D Biol Crystallogr 50:760–763

    Article  Google Scholar 

  40. Emsley P, Cowtan K (2004) Acta Crystallogr Sect D Biol Crystallogr 60:2126–2132

    Article  Google Scholar 

  41. Murshudov GN, Vagin AA, Dodson EJ (1997) Acta Crystallogr Sect D Biol Crystallogr 53:240–255

    Article  CAS  Google Scholar 

  42. Winn MD, Isupov MN, Murshudov GN (2001) Acta Crystallogr Sect D Biol Crystallogr 57:122–133

    Article  CAS  Google Scholar 

  43. Ebihara A, Okamoto A, Kousumi Y, Yamamoto H, Masui R, Ueyama N, Yokoyama S, Kuramitsu S (2005) J Struct Funct Genomics 6:21–32

    Article  CAS  PubMed  Google Scholar 

  44. Streit BR, Blanc B, Lukart-Rodgers GS, Rodgers KL, DuBois JL (2010) J Am Chem Soc (in press)

  45. Yi J, Heinecke J, Tan H, Ford PC, Richter-Addo GB (2009) J Am Chem Soc 131(50):18119–18128

    Article  CAS  PubMed  Google Scholar 

  46. Williams PA, Fulop V, Garman EF, Saunders NF, Ferguson SJ, Hajdu J (1997) Nature 389:406–412

    Article  CAS  PubMed  Google Scholar 

  47. Yi J, Safo MK, Richter-Addo GB (2008) Biochemistry 47:8247–8249

    Article  CAS  PubMed  Google Scholar 

  48. Valentine JS, Sheridan RP, Allen LC, Kahn PC (1979) Proc Natl Acad Sci USA 76:1009–1013

    Article  CAS  PubMed  Google Scholar 

  49. Poulos TL, Fenna RE (1994) Met Ions Biol Syst 30:25–75

    CAS  Google Scholar 

  50. Candeias LP, Folkes LK, Wardman P (1997) Biochemistry 36:7081–7085

    Article  CAS  PubMed  Google Scholar 

  51. Poulos TL, Finzel BC (1984) Pept Protein Rev 4:115–171

    CAS  Google Scholar 

  52. Rodriguez-Lopez JN, Smith AT, Thorneley RN (1996) J Biol Chem 271:4023–4030

    Article  CAS  PubMed  Google Scholar 

  53. Rodriguez-Lopez JN, Smith AT, Thorneley RN (1997) J Biol Chem 272:389–395

    Article  CAS  PubMed  Google Scholar 

  54. Henriksen A, Schuller DJ, Meno K, Welinder KG, Smith AT, Gajhede M (1998) Biochemistry 37:8054–8060

    Article  CAS  PubMed  Google Scholar 

  55. Midda S, Das AK (2005) Theochem 713:101–106

    Article  CAS  Google Scholar 

  56. Gajhede M, Schuller DJ, Henriksen A, Smith AT, Poulos TL (1997) Nat Struct Biol 4:1032–1038

    Article  CAS  PubMed  Google Scholar 

  57. Fita I, Rossmann MG (1985) J Mol Biol 185:21–37

    Article  CAS  PubMed  Google Scholar 

  58. Smith AT, Veitch NC (1998) Curr Opin Chem Biol 2:269–278

    Article  CAS  PubMed  Google Scholar 

  59. Ortiz de Montellano PR, Choe YS, DePillis G, Catalano CE (1987) J Biol Chem 262:11641–11646

    CAS  PubMed  Google Scholar 

  60. Zdilla MJ, Lee AQ, Abu-Omar MM (2009) Inorg Chem 48:2260–2268

    Article  CAS  PubMed  Google Scholar 

  61. Pelletier H, Kraut J (1992) Science 258:1748–1755

    Article  CAS  PubMed  Google Scholar 

  62. Sivaraja M, Goodin DB, Smith M, Hoffman BM (1989) Science 245:738–740

    Article  CAS  PubMed  Google Scholar 

  63. Bonagura CA, Bhaskar B, Shimizu H, Li H, Sundaramoorthy M, McRee DE, Goodin DB, Poulos TL (2003) Biochemistry 42:5600–5608

    Article  CAS  PubMed  Google Scholar 

  64. Goodin DB, McRee DE (1993) Biochemistry 32:3313–3324

    Article  CAS  PubMed  Google Scholar 

  65. Johnson BJ, Cohen J, Welford RW, Pearson AR, Schulten K, Klinman JP, Wilmot CM (2007) J Biol Chem 282:17767–17776

    Article  CAS  PubMed  Google Scholar 

  66. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) J Appl Crystallogr 26:282

    Article  Google Scholar 

  67. Cruikshank DW (2006) In: Rossmann MG, Arnold E (eds) International tables for crystallography. Springer, New York, pp 403–418

Download references

Acknowledgments

This research was supported by the National Institutes of Health (R01 GM-66569 to C.M.W.; R03 ES-14390 and R01 GM-90260 to J.L.D.), and a Minnesota Partnership for Biotechnology and Medical Genomics grant SPAP-05-0013-P-FY06 to C.M.W. B.R.S. was supported by an Environmental Protection Agency STAR fellowship (FP-91690601-0). Computer resources were provided by the Basic Sciences Computing Laboratory of the University of Minnesota Supercomputing Institute, and we thank Can Ergenekan for his support. X-ray data were collected at the Kahlert Structural Biology Laboratory (KSBL) at The University of Minnesota and beamline 19-ID, Structural Biology Consortium–Collaborative Access Team, at the Advanced Photon Source, Argonne National Laboratory (Argonne, IL, USA). Argonne National Laboratory is operated by University of Chicago Argonne LLC for the US Department of Energy, Office of Biological and Environmental Research under contract DE-AC02-06CH11357. We thank Ed Hoeffner for KSBL support and Steve Ginell and the staff at Sector 19, Advanced Photon Source, for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carrie M. Wilmot.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 309 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goblirsch, B.R., Streit, B.R., DuBois, J.L. et al. Structural features promoting dioxygen production by Dechloromonas aromatica chlorite dismutase. J Biol Inorg Chem 15, 879–888 (2010). https://doi.org/10.1007/s00775-010-0651-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-010-0651-0

Keywords

Navigation