Skip to main content
Log in

Gadolinium-containing bioparticles as an active entity to promote cell cycle progression in mouse embryo fibroblast NIH3T3 cells

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

In the present study, we demonstrated that gadolinium-containing particles formed in cell culture medium acted as a biologically active entity to mediate cell cycle progression in NIH3T3 cells. The particles were observed to accumulate at the cell surface by scanning electron microscopy. Energy-dispersive X-ray analysis was undertaken and confirmed that gadolinium was incorporated in the agglomerated particles. Moreover, the smaller gadolinium particles exhibited a stronger cell-cycle-promoting effect than the larger ones, but they shared the common signaling pathways. Both extracellular signal regulated kinase and phosphatidylinositol 3-kinase signaling pathways were activated by gadolinium-containing particles and may account for their proliferation-promoting effect on NIH3T3 cells. Furthermore, the study showed that the free gadolinium ion released from gadolinium-containing particles may be responsible for the proliferation effect. This study will be helpful to clarify the biological effect of the insoluble species formed from Gd3+ as well as other multivalent metal ions under physiological conditions and will help to improve their medical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

DMEM:

Dulbecco’s modified Eagle’s medium

DTS:

Dispersion Technology Software

EDX:

Energy-dispersive X-ray

ERK:

Extracellular-signal-regulated kinase

JNK:

c-Jun N-terminal kinase

MAPK:

Mitogen-activated protein kinase

MTT:

3-(4,5-Dimethylthiazoyl-2-yl)-2,5-diphenyltetrazolium bromide

NSF:

Nephrogenic systemic fibrosis

PBS:

Phosphate-buffered saline

PI3K:

Phosphatidylinositol 3-kinase

pRb:

Retinoblastoma tumor suppressor protein

ROS:

Reactive oxygen species

SEM:

Scanning electron microscopy

References

  1. Briand GG, Burford N (1999) Chem Rev 99:2601–2658

    Article  CAS  PubMed  Google Scholar 

  2. Berthon G (2002) Coord Chem Rev 228:319–341

    Article  CAS  Google Scholar 

  3. Sigel A, Sigel H (2003) Metal ions in biological systems: lanthanides and their interrelations with biosystems. Dekker, New York

    Google Scholar 

  4. Adding LC, Bannenberg GL, Gustafsson LE (2001) Cardiovasc Drug Rev 19:41–56

    CAS  PubMed  Google Scholar 

  5. Wang K, Li R, Cheng Y, Zhu B (1999) Coord Chem Rev 190–192:297–308

    Article  Google Scholar 

  6. Shellock FG, Spinazzi A (2008) AJR Am J Roentgenol 191:1129–1139

    Article  PubMed  Google Scholar 

  7. Fricker SP (2006) Chem Soc Rev 35:524–533

    Article  CAS  PubMed  Google Scholar 

  8. Bingham D, Dobrota M (1995) J Inorg Biochem 59:39–52

    Article  CAS  PubMed  Google Scholar 

  9. Caldwell RA, Clemo HF, Baumgarten CM (1998) Am J Physiol 275:C619–C621

    CAS  PubMed  Google Scholar 

  10. Wengler G, Wengler G, Koschinski A (2007) J Gen Virol 88:3018–3026

    Article  CAS  PubMed  Google Scholar 

  11. Evans CH (1990) Biochemistry of the lanthanides. Plenum Press, New York

    Google Scholar 

  12. Ozturk SS, Hu WS (2006) Cell culture technology for pharmaceutical and cell-based therapies. CRC Press, Boca Raton

  13. Lizon C, Fritsch P (1999) Int J Radiat Biol 75:1459–1471

    Article  CAS  PubMed  Google Scholar 

  14. Takano H, Glantz SA (1995) Circulation 91:1575–1587

    CAS  PubMed  Google Scholar 

  15. Stacy GP Jr, Jobe RL, Taylor LK, Hansen DE (1992) Am J Physiol 263:H613–H621

    PubMed  Google Scholar 

  16. Fu LJ, Li JX, Yang XG, Wang K (2009) J Biol Inorg Chem 14:219–227

    Article  CAS  PubMed  Google Scholar 

  17. Yu S, Hu J, Yang X, Wang K, Qian ZM (2006) Biochemistry 45:11217–11225

    Article  CAS  PubMed  Google Scholar 

  18. Yu S, Yuan L, Yang X, Wang K, Ke Y, Qian ZM (2005) J Cell Biochem 94:508–519

    Article  CAS  PubMed  Google Scholar 

  19. Boyd AS, Zic JA, Abraham JL (2007) J Am Acad Dermatol 56:27–30

    Article  PubMed  Google Scholar 

  20. High WA, Ayers RA, Chandler J, Zito G, Cowper SE (2007) J Am Acad Dermatol 56:21–26

    Article  PubMed  Google Scholar 

  21. Thakral C, Alhariri J, Abraham JL (2007) Contrast Media Mol Imaging 2:199–205

    Article  CAS  PubMed  Google Scholar 

  22. Khurana A, Greene JF Jr, High WA (2008) J Am Acad Dermatol 59:218–224

    Article  PubMed  Google Scholar 

  23. Kay J, Bazari H, Avery LL, Koreishi AF (2008) N Engl J Med 358:827–838

    Article  CAS  PubMed  Google Scholar 

  24. Wermuth PJ, Del Galdo F, Jimenez SA (2009) Arthritis Rheum 60:1508–1518

    Article  PubMed  Google Scholar 

  25. Murdock RC, Braydich-Stolle L, Schrand AM, Schlager JJ, Hussain SM (2008) Toxicol Sci 101:239–253

    Article  CAS  PubMed  Google Scholar 

  26. Mosmann T (1983) J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

  27. Slater TF, Sawyer B, Straeuli U (1963) Biochim Biophys Acta 77:383–393

    Article  CAS  PubMed  Google Scholar 

  28. Vistica DT, Skehan P, Scudiero D, Monks A, Pittman A, Boyd MR (1991) Cancer Res 51:2515–2520

    CAS  PubMed  Google Scholar 

  29. Fu Y, Wang Q, Yang XG, Yang XD, Wang K (2008) J Biol Inorg Chem 13:1001–1009

    Article  CAS  PubMed  Google Scholar 

  30. Cuenda A, Rousseau S (2007) Biochim Biophys Acta 1773:1358–1375

    Article  CAS  PubMed  Google Scholar 

  31. Weston CR, Davis RJ (2007) Curr Opin Cell Biol 19:142–149

    Article  CAS  PubMed  Google Scholar 

  32. Tamrakar S, Rubin E, Ludlow JW (2000) Frontiers Biosci 5:D121–D137

    Article  CAS  Google Scholar 

  33. Kitagawa M, Higashi H, Jung HK, Suzuki-Takahashi I, Ikeda M, Tamai K, Kato J, Segawa K, Yoshida E, Nishimura S, Taya Y (1996) EMBO J 15:7060–7069

    CAS  PubMed  Google Scholar 

  34. Tsukada Y, Miyazawa K, Kitamura N (2001) J Biol Chem 276:40968–40976

    Article  CAS  PubMed  Google Scholar 

  35. Wang S, Liu S, Wu MH, Geng Y, Wood C (2001) J Virol 75:11961–11973

    Article  CAS  PubMed  Google Scholar 

  36. Garcia Z, Kumar A, Marques M, Cortes I, Carrera AC (2006) EMBO J 25:655–661

    Article  CAS  PubMed  Google Scholar 

  37. Meloche S, Pouyssegur J (2007) Oncogene 26:3227–3239

    Article  CAS  PubMed  Google Scholar 

  38. Chambard JC, Lefloch R, Pouyssegur J, Lenormand P (2007) Biochim Biophys Acta 1773:1299–1310

    Article  CAS  PubMed  Google Scholar 

  39. Port M, Idee JM, Medina C, Robic C, Sabatou M, Corot C (2008) Biometals 21:469–490

    Article  CAS  PubMed  Google Scholar 

  40. Toker A (2008) Trends Biochem Sci 33:356–359

    Article  CAS  PubMed  Google Scholar 

  41. Klaine SJ, Alvarez PJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Environ Toxicol Chem 27:1825–1851

    Article  CAS  PubMed  Google Scholar 

  42. Zhang Y, Fu LJ, Li JX, Yang XG, Yang XD, Wang K (2009) Biometals 22:511–519

    Article  PubMed  Google Scholar 

  43. Valiathan MS, Kartha CC, Eapen JT, Dang HS, Sunta CM (1989) Cardiovasc Res 23:647–648

    Article  CAS  PubMed  Google Scholar 

  44. Bukhman G, Ziegler J, Parry E (2008) PLoS Negl Trop Dis 2:e97

    Article  PubMed  Google Scholar 

  45. Eapen JT, Kartha CC, Valiathan MS (1997) Biol Trace Elem Res 59:41–44

    Article  CAS  PubMed  Google Scholar 

  46. Rzigalinski BA (2005) Technol Cancer Res Treat 4:651–659

    CAS  PubMed  Google Scholar 

  47. Preeta R, Nair RR (1999) J Mol Cell Cardiol 31:1573–1580

    Article  CAS  PubMed  Google Scholar 

  48. Park EJ, Choi J, Park YK, Park K (2008) Toxicology 245:90–100

    Article  CAS  PubMed  Google Scholar 

  49. Idee JM, Port M, Raynal I, Schaefer M, Le Greneur S, Corot C (2006) Fundam Clin Pharmacol 20:563–576

    Article  CAS  PubMed  Google Scholar 

  50. Lacour B, Lucas A, Auchere D, Ruellan N, Patey N, Dr Eke TB (2005) Kidney Int 67:1062–1069

    Article  CAS  PubMed  Google Scholar 

  51. Muller C, Chantrel F, Faller B (2009) Nephrol Dial Transplant 24:3898–3899

    Article  Google Scholar 

  52. Davis RL, Abraham JL (2009) Nephrol Dial Transplant 24:3247–3250

    Article  PubMed  Google Scholar 

  53. Rosen LB, Greenberg ME (1996) Proc Natl Acad Sci USA 93:1113–1118

    Article  CAS  PubMed  Google Scholar 

  54. Wu W, Graves LM, Jaspers I, Devlin RB, Reed W, Samet JM (1999) Am J Physiol 277:L924–L931

    CAS  PubMed  Google Scholar 

  55. Tateyama M, Kubo Y (2006) Proc Natl Acad Sci USA 103:1124–1128

    Article  CAS  PubMed  Google Scholar 

  56. Miranti CK, Brugge JS (2002) Nat Cell Biol 4:E83–E90

    Article  CAS  PubMed  Google Scholar 

  57. Takagi J (2007) Curr Opin Cell Biol 19:557–564

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (20637010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Gai Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, JX., Liu, JC., Wang, K. et al. Gadolinium-containing bioparticles as an active entity to promote cell cycle progression in mouse embryo fibroblast NIH3T3 cells. J Biol Inorg Chem 15, 547–557 (2010). https://doi.org/10.1007/s00775-010-0622-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-010-0622-5

Keywords

Navigation